
1

The SimpleScalar Macro Tool (SSIT)

Carsten M. van der Hoeven, B.H.H. (Ben) Juurlink, Demid Borodin
Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
Phone: +31 15 2787362, Fax: +31 15 2784898.

E-mail: C.M.vanderHoeven@TUDelft.nl, {benj,demid}@ce.et.tudelft.nl

Abstract— SimpleScalar is a simulation tool set that is
often used in computer architecture research. Amongst
others, it provides a mechanism to synthesize new instruc-
tions without having to modify the assembler, by anno-
tating existing instructions in the assembly files. This
mechanism, however, is rather error-prone, especially for
a novice in SimpleScalar. For this reason two tools have al-
ready been developed. These tools are called SimpleScalar
Instruction Tool (SSIT) and SimpleScalar Architecture
Tool (SSAT). With SSIT, a developer can add functional
units and new instructions to SimpleScalar and it allowes
the programmer to use readable instructions in assembly
to make programming ISA extensions less error prone and
easier to do. SSAT enables the developer to extend the
number of registers in the SimpleScalar simulator and use
them in assembly. This paper presents the SimpleScalar
Macro Tool (SSMT), a tool to enable the developer to
write ISA extensions in C programming language instead
of in assembly. This makes extending the SimpleScalar
simulation toolset with new instructions much easier be-
cause the developer now can concentrate on writing op-
timal code without having to bother about register allo-
cation and instruction ordering of the existing ISA. Be-
sides that, experiments conducted on several kernels have
showed that SSMT does not introduce a significant perfor-
mance overhead and in some cases even increases the per-
formance of ISA extensions up to 6% compared to hand
written assembly code.

Keywords— processor simulator, instruction set archi-
tecture, macro programming interface

I. Introduction

Simulation is often used to evaluate newly designed
computer architectures. SimpleScalar [1, 2] is a very
popular processor simulator toolset that enables a de-
veloper to effectively implement, simulate and eval-
uate ISA extensions. To ensure easy development,
a version of the GNU C compiler has been provided
along with the toolset. SimpleScalar has been used
to evaluate many new architectural designs such as
novel branch predictors [3,4], cache organizations [5,6]
, instruction set extensions [7, 8] and fault tolerance
schemes [9, 10].

The SimpleScalar Processor Toolset provides a mecha-
nism to extend the Instruction Set Architecture, how-
ever this mechanism is quite error prone and difficult
to use, especially by a novice at SimpleScalar. This
mechanism requires the developer to write annotated
assembly instructions where he needs ISA extensions
to be executed. In addition to this, the developer also
has to do register allocation for these ISA extensions
as well since the provided GNU C compiler does not
recognise the extensions. Therefore, two other tools
have been designed at the Delft University of Tech-
nology. These tools are called SimpleScalar Instruc-
tion Tool (SSIT) and SimpleScalar Architecture Tool
(SSAT) [11,12].
SSIT is designed to add functional units and new in-
structions to SimpleScalar and to allow the user to
use readable assembly code instead of annotated as-
sembly code, this makes writing optimized assembly
much less error prone and easier. SSAT allows the
developer to extend the number of existing registers,
alias existing registers and define new registers that
are not already present in the SimpleScalar processor
and use these in assembly.
Although SSIT and SSAT substantially simplify the
work of a developer, ISA extensions still need to be
written in assembly language where the developer
needs to take everything into account, including reg-
ister allocation and instruction ordering. To aid the
developer in his efforts, the SimpleScalar Macro Tool
is developed. This tool allows the developer to write
ISA extensions directly in C code and leave the regis-
ter allocation and instruction ordering to the C com-
piler.
This paper first discusses SSMT in detail in Section
II, where Section II-A covers the SSIT configuration
file, Section II-B discusses the internals of SSMT and
Section II-C shows a small example. Section III covers
the results of the experiments that were conducted to
test SSMT and evaluate the performance impact of
the macro interface. Finally Section IV provides a

mailto:benj@ce.et.tudelft.nl?Subject=By the link in "SSIT and SSAT" paper

2

short summary.

II. SSMT

The SimpleScalar Macro Tool (SSMT) is a tool de-
signed to work within the tool chain of which the SSIT
and SSAT tools are already part of. Unlike SSIT
and SSAT, which process assembly code to change
readable mnemonics into annotated instructions that
are recognized by the assembler, SSMT is used be-
fore compiling C-code into assembly. SSMT takes in
the SSIT configuration file and generates a header file
with C macros that can be used throughout any C
code that needs to be optimized using the newly de-
signed ISA extensions described in the configuration
file. This is depicted in Figure 1. This section first
describes the SSIT configuration file followed by the
internals of SSMT and a small example

A. SSIT configuration file
In order to run SSIT and SSMT properly, a configu-

ration file needs to be provided. The contents and the
format of this file has been defined by the developers of
SSIT, but is very suitable to provide SSMT the appro-
priate information. A SSIT configuration file consists
of a number of sections with one of two types: (1)
FUNCTIONAL UNITS sections in which new func-
tional units can be defined or (2) MACHINE.DEF
sections that allows a developer to define new instruc-
tions. Since the FUNCTIONAL UNITS sections are
not used by SSMT they are not discussed further. The
MACHINE.DEF sections are constructed as follows:

#define <INSTRUCTION NAME>_IMPL { \

<Functional implementation of the new instruction in C> \

}

DEFINST(<instruction name>, <operands>,

<name of annotated instruction>,

<FU class>, <iflags>,

<odep1>, <odep2>, <idep1>, <idep2>, <idep3>

)

where
<instruction name> is the name of the new instruc-
tion as a string.
<operands> is a string that specifies the instruction
operand fields (the instruction format).
<name of annotated instruction> is the name of
an existing SimpleScalar instruction which will be an-
notated to pass the new instruction through the Sim-
pleScalar assembler.
<FU class> is the resource class required by this new
instruction.
<iflags> are instruction flags, used by SimpleScalar
for fast decoding.
<odep1>, <odep2> are two output dependency desig-
nators. They specify which registers are modified by

the instruction and are used to determine data depen-
dencies.
<idep1>, <idep2>, <idep3> are input dependency
designators. They specify which registers are read by
the instruction.
For more information on SSIT please refer to the SSIT
manual [12].

B. Internals

Figure 1 depicts how SSMT is used in combination
with SSIT and SSAT. The SSIT configuration file is
described in Section II-A and in [12]. This section
will describe how the SSIT configuration file is used
to generate the header file with the macros.
The data that is necessary to construct the macros
is taken from each instruction definition in the
SSIT configuration file. From this file, the follow-
ing items are taken from each MACHINE.DEF sec-
tion: <instruction name>, <operands>, <odep1>,
<odep2>, <idep1>, <idep2> and <idep3>. From
the information that is obtained by reading these
fields, the macros are constructed. The general form
of these macros is:
SSMT INSTRUCTION NAME XXXXX(ARGUMENTS)
where
SSMT is a prefix to ensure that each macro gen-
erated with SSMT is unlike a user defined macro.
INSTRUCTION NAME is the name of the instruction in
capitals. If an instruction name contains dots (spaces
and underscores are not allowed), and underscore
should take its place.
XXXXX is a sequence of letters indicating the type of
the following arguments. Each X can stand for one of
the following four possibilities:
• Nothing - If the number of arguments is less than
5, some of the letters are omitted and do not appear
in the macro.
• V - If the argument is supposed to be a variable
name, the letter is a ’V’.
• R - If the argument is supposed to indicate a regis-
ter, the letter is an ’R’. The register name should be
indicated by a string for correct results. More about
this comes later.
• I - For the instructions that need an immediate
operand, there is the letter ’I’ to indicate that the
variable should be an immediate value.
ARGUMENTS is a list of arguments in the same sequence
as they are needed by the instruction to which the
macro refers. The type of these arguments should be
as determined by the letters preceding the arguments.
Compiler errors will occur when the types are not cor-

3

Fig. 1
Entire toolchain around SimpleScalar, including SSIT, SSAT and SSMT

rect, although no type checking is done. The need for
differentiation by letters comes from the fact that the
macros are regular C macros. Therefore, each macro
should be unique and given the number of possibili-
ties, this is the most convenient way to ensure that all
the macros are unique.
The distinction between variable names and register
names (strings) originates from the possibility to ex-
tend the number of registers or define new registers
with SSAT. Since the compiler does not recognize
these new registers, it is not possible to apply au-
tomatic register allocation on those registers. There-
fore, a developer needs to do manual register alloca-
tion for extended or new registers by the use of regis-
ter names, but can leave the register allocation to the
compiler when using existing registers by using the
variable names.
Due to minour differences in the implementation of
some instructions, there are two macros that always
have the same configuration:

- Comment macro
This is a macro that has ”COMMENT” for the in-
struction name and takes only a string as an argu-
ment. No identification letters are needed.
- Load and Store instructions
Instructions that operate on memory always have the

following macros to access them:
SSMT_NAME_RV(register_name, pointer_to_variable)

and
SSMT_NAME_RVI(register_name, pointer_to_variable,

immediate_address_offset)

Because custom load and store instructions are not
written unless there is a need for them (because of new
types of registers that are defined with SSAT), these
macros take in the name of a register and the address
of a certain variable (which can be loaded into the new
register). For easy memory offset (which is possible
in SimpleScalar), the immediate value is added since
the translation from macro to assembly does not do
this automatically.
The macros that are described above are regular C
macros. This means that they are simply replaced
during the pre-processing of the C file. In this case
each macro is replaced by a piece of extended in-line
assembly containing the name of the instruction and
all the variables.

C. Example

This section demonstrates an example of the use of
the macros in C-code. The example consists of snip-
pets taken from four different files. The first snippet
is taken from the SSIT configuration file:

#define AVG_IMPL { \
sword_t result = (GPR(RS)+GPR(RT)) >> 1; \

4

SET_GPR(RD, result); \
}

DEFINST("avg", "d,s,t", "add",
avg_FU, F_ICOMP,
DGPR(RD), DNA, DGPR(RS), DGPR(RT), DNA

)

This piece of code defines a new instruction that cal-
culates the average of two input arguments and writes
it to the output register. In the instruction definition,
the name of the annotated instruction, ”avg” in this
case, comes first, then the the register layout followed
by the instruction that should be annotated to make
the new instruction available in the simulator. Next
comes the functional unit followed by an instruction
flag. Last come the output and input registers, each
of which one is not used (DNA). For more information
about this see Section II-A or [12].

Given the SSIT configuration file with the instruc-
tion definition as stated above, SSMT generates the
following in the header file:
SSMT_AVG_VVV(out0,in0,in1) asm("avg %0,%1,%2":"=r" (out0):"r" (in0),"r" (in1))

SSMT_AVG_VVR(out0,in0,in1) asm("avg %0,%1," in1 "":"=r" (out0):"r" (in0))

SSMT_AVG_VRV(out0,in0,in1) asm("avg %0," in0 ",%1":"=r" (out0):"r" (in1))

SSMT_AVG_VRR(out0,in0,in1) asm("avg %0," in0 "," in1 "":"=r" (out0):)

SSMT_AVG_RVV(out0,in0,in1) asm("avg " out0 ",%0,%1"::"r" (in0),"r" (in1))

SSMT_AVG_RVR(out0,in0,in1) asm("avg " out0 ",%0," in1 ""::"r" (in0))

SSMT_AVG_RRV(out0,in0,in1) asm("avg " out0 "," in0 ",%0"::"r" (in1))

SSMT_AVG_RRR(out0,in0,in1) asm("avg " out0 "," in0 "," in1 ""::)

Since the new instruction takes in three different ar-
guments and each argument can be either a normal
variable that is placed in a certain register or a vari-
able that is placed in a type of register that is either
new, extended or aliased, the total number of possi-
bilities is eight.

An example of a C source file in which the generated
macro is used is stated below:

#include "ssmt.h"

int main(int argc, char ** argv)
{
short a = 6, b = 4;
SSMT_AVG_VVV(a, a, b);
return 0;

}

Here, the macro ”SSMT AVG VVV” takes in vari-
ables ’a’ and ’b’ and stores the result in ’a’. Note that
this code does not present its result to the user, how-
ever at the end, variable ’a’ should contain the value
’5’.
The last part of the example is a small piece of the
code that is generated by gcc, with optimization level
2 enabled:

..
li $5, 0x00000006
li $2, 0x00000004

#APP
avg $5,$5,$2

#NO_APP
..

As can be seen in the assembly code, the variables
’a’ and ’b’ are loaded into a register before execu-
tion of the new instruction. The piece of code where
the variables are loaded into registers is automatically
generated by GCC.

III. Experimental results

To test the impact of the macro tool on the perfor-
mance of applications using ISA extensions, eight mul-
timedia kernels that were rewritten in assembly to use
an adapted form of MMX extensions are now rewrit-
ten in C code to use the macros SSMT created. The
rewritten C code is then compiled with GCC and ran
through SSIT and SSAT to obtain executable code.
The rewritten C code versions of the kernels are then
compared to their hand written counterpart and the
original C code. First the kernels themselves will be
discussed, followed by the results of the experiments.

A. Kernels

In order to make proper comparison a total of eight
multimedia kernels were changed to use the macros
from the header file that was created with SSMT. All
kernels are optimized for the use of MMX instructions
and thus work on vectors of four or eight bytes at a
time. Three of the kernels have actually two forms
that are basically the same. One of the two is a small
version that works on matrices of eight by eight or
eight by sixteen bytes. The other one is a large ver-
sion that works on vectors and matrices with much
larger dimensions to more accurately simulate the re-
sult of the use of MMX instructions because relative
overhead for example is decreased.

A.1 Add image

This kernel adds two images of the same size and
stores the result in one of the input images. The im-
ages are matrices of unsigned bytes thus limiting each
value between 0 and 255. Saturation is done in the
MMX instructions.
The small version of the ’Add image’ kernel adds two
images of 8 x 8 bytes.
The large version of the ’Add image’ kernel adds two
images of 704 x 576 bytes. These images are converted

5

from Windows Bitmap files to be read in properly by
the initialization part of the kernel.

A.2 DCT

The DCT kernel computes the Discrete Cosine
Transformation. In this particular case the algorithm
works on a matrix of 704 x 576 bytes and stores the
result in a different one.

A.3 IDCT

To calculate the reverse process of the DCT, this
kernel calculates the Inverse Discrete Cosine Transfor-
mation. Once again this kernel operates on a matrix
of bytes that is 704 high and 576 wide. The result is
stored in a different matrix than the original one.

A.4 Matrix Transpose

The transpose of a matrix is calculated with this
kernel. Like the kernel that adds two images this ker-
nel has two versions:
The smaller version transposes an 8 x 8 matrix, the
larger matrix (for the large version) transposes a ma-
trix of 704 x 576.

A.5 Matrix Vector multiplication

Matrix Vector multiplication is something that is
used quite often. This kernel also has a version that
works on a matrix of 8 x 16 bytes and a vector of 16
bytes, this is the small one. The large version works
on a matrix of 704 x 576 bytes and a vector of 576
bytes.

B. Comparison results

This chapter discusses the results of the compar-
ison between hand written code and C-code using
macros. The total comparison is between the origi-
nal C-code, C-code optimized with GCC optimization
level 2, hand written assembly, C-code using macros
and C-code using macros and optimized with GCC
optimization level 2.

As a measurement, the total number of cycles that
is needed to execute a certain kernel is taken and com-
pared to the other values. The results of the exper-
iment is shown in Figure 2. From this figure it is
clear that the hand written assembly code performs
significantly better than the original C code, however,
optimizing C code with GCC already proves to give a
significant speedup that is in half the cases even faster
than the unoptimized C code that uses the macro-
interface. Optimizing the macro using C-code with
GCC gives performance that is fairly comparable to

hand written assembly, in some cases the macro us-
ing optimized C-code is even better than the hand
written assembly. To make the relation between the
performance of the hand written assembly and the op-
timized C code using the macro interface, both values
are normalized to the number of cycles of the hand
written version and shown in Figure 3. This figure
shows that, with the exception of one case, the opti-
mized C code has performance that rivals that of the
hand written code. The differences in performance
can be partially explained by the following:
- FOR loops
FOR loops are statements that are widely used by
programmers. The way a FOR loop is translated into
assembly is in general dependent on the way it is writ-
ten in C. An initialization or loop condition with a
certain variable for example will give a different re-
sult than the same thing with values that are known
at compile time. GCC makes these kind of decisions
based on what is known at compile time, without re-
gards to the context of the loop (something that the
compiler can not recognize because it lacks the intel-
ligence to do so). A human programmer however, can
take the context into account and therefore write ei-
ther a more efficient FOR loop or (unconsciously) a
less efficient one.
- registers
When it comes to registers, the compiler is mostly
better than human programmers. Where GCC has
no problem at all taking all available registers into ac-
count, a human programmer has far more difficulties
in doing so. For that reason a human programmer will
most likely give up his efforts before they begin and
take a decrease in performance for granted to be able
to write code that is more understandable (and thus
easier to write), where GCC writes code that is less
readable but more efficient when it comes to registers.

IV. Conclusion

This paper has presented the SimpleScalar Macro
Tool. A tool that allows a developer to use new in-
structions that are written for the SimpleScalar simu-
lator in a high level programming language by means
of a macro interface. The macro interface simplifies
the use of ISA extensions when programming appli-
cations that use them. Although the programmer is
not completely relieved from programming new appli-
cations in assembly language, SSMT does make the
job easier by removing the burden of register allo-
cation and all other non-ISA extension related pro-
gramming from the programmers mind. Besides that,

6

Fig. 2
Number of execution cycles that is needed to perform a kernel, normalized to the execution time

of the unoptimized original C code

Fig. 3
Number of execution cycles that is needed to execute a kernel, normalized to the number of

cycles needed by the hand written assembly

SSMT usually does not introduce a significant perfor-
mance decrease that is often associated with the use
of a macro(-like) interface. In some cases the macro
using C code even outperforms the hand-written code.

References

[1] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar:
An Infrastructure for Computer System Modeling. Com-
puter, 35(2):59–67, 2002.

[2] Doug Burger and Todd M. Austin. The SimpleScalar

Tool Set, Version 2.0. SIGARCH Comput. Archit. News,
25(3):13–25, 1997.

[3] Daniel A. Jimenez. Piecewise Linear Branch Prediction. In
Proc. 32nd Annual Int. Symp. on Computer Architecture
(ISCA-05), pages 382–393, Washington, DC, USA, 2005.
IEEE Computer Society.

[4] Renju Thomas, Manoj Franklin, Chris Wilkerson, and
Jared Stark. Improving Branch Prediction by Dynamic
Dataflow-based Identification of Correlated Branches From
a Large Global History. In Proc. 30th Annual Int. Symp.
on Computer Architecture (ISCA-05), pages 314–323, New
York, NY, USA, 2003. ACM Press.

7

[5] Serkan Ozdemir, Debjit Sinha, Gokhan Memik, Jonathan
Adams, and Hai Zhou. Yield-aware cache architectures. In
Proc. 39th Annual IEEE/ACM Int. Symp. on Microarchi-
tecture (MICRO-39), pages 15–25, Washington, DC, USA,
2006. IEEE Computer Society.

[6] Chuanjun Zhang. Balanced Cache: Reducing Conflict
Misses of Direct-Mapped Caches. In Proc. 33rd Annual
Int. Symp. on Computer Architecture (ISCA-06), pages
155–166, Washington, DC, USA, 2006. IEEE Computer
Society.

[7] D. Cheresiz, B.H.H. Juurlink, S. Vassiliadis, and H.A.G.
Wijshoff. The CSI Multimedia Architecture. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems,
pages 1–13, January 2005.

[8] Asadollah Shahbahrami, Ben Juurlink, Demid Borodin,
and Stamatis Vassiliadis. Avoiding Conversion and Re-
arrangement Overhead in SIMD Architectures. Interna-
tional Journal of Parallel Programming, pages 237–260,
June 2006.

[9] Eric Rotenberg. AR-SMT: A Microarchitectural Approach
to Fault Tolerance in Microprocessors. In FTCS-29, pages
84–91, Madison, Wisconsin, USA, Jun 1999. IEEE Com-
puter Society Press.

[10] D. Borodin, B.H.H. Juurlink, and S. Vassiliadis.
Instruction-Level Fault Tolerance Configurability. In IC-
SAMOS VII: Int. Conf. on Embedded Computer Systems:
Architectures, Modeling, and Simulation.

[11] B.H.H. (Ben) Juurlink, Demid Borodin, Roel J. Meeuws,
Gerard Th. Aalbers, and Hugo Leisink. The SimpleScalar
Instruction Tool (SSIT) and the SimpleScalar Architec-
ture Tool (SSAT). unpublished manuscript, available at
http://ce.et.tudelft.nl/ demid/SSIAT/.

[12] SSIT, SSAT and SSIAT webpage. http://ce.et.tudelft.
nl/~demid/SSIAT/.

http://ce.et.tudelft.nl/~demid/SSIAT/
http://ce.et.tudelft.nl/~demid/SSIAT/

	Introduction
	SSMT
	SSIT configuration file
	Internals
	Example

	Experimental results
	Kernels
	Add image
	DCT
	IDCT
	Matrix Transpose
	Matrix Vector multiplication

	Comparison results

	Conclusion

