
Revista Avances en Sistemas e Informática, Vol. 6 No. 1, Medellin, Junio de 2009, ISSN 1657-7663 1

Performance Evaluation of Macroblock-level

Parallelization of H.264 Decoding on a cc-NUMA

Multiprocessor Architecture

Mauricio Alvarez, Ing.1, Alex Ramirez, PhD.1,2, Mateo Valero, PhD.1,2

Arnaldo Azevedo, MSc.3, Cor Meenderinck, MSc.3, Ben Juurlink, PhD.3,

1Universitat Politècnica de Catalunya, Barcelona, Spain
2Barcelona Supercomputing Center, Barcelona, Spain

3Delft University of Technology, Delft, The Netherlands

alvarez@ac.upc.edu, alex.ramirez@bsc.es, {cor, azevedo}@ce.et.tudelft.nl,

B.H.H.Juurlink@tudelft.nl, mateo.valero@bsc.es.

Received for publication: Accepted:. Final version:

Abstract—This paper presents a study of the performance
scalability of a macroblock-level parallelization of the H.264
decoder for High Definition (HD) applications on a multiproces-
sor architecture. We have implemented this parallelization on a
cache coherent Non-uniform Memory Access (cc-NUMA) shared
memory multiprocessor (SMP) and compared the results with
the theoretical expectations. The study includes the evaluation
of three different scheduling techniques: static, dynamic and
dynamic with tail-submit. A dynamic scheduling approach with a
tail-submit optimization presents the best performance obtaining
a maximum speedup of 9.5 with 24 processors. A detailed
profiling analysis showed that thread synchronization is one
of the limiting factors for achieving a better scalability. The
paper includes an evaluation of the impact of using blocking
synchronization APIs like POSIX threads and POSIX real-time
extensions. Results showed that macroblock-level parallelism as
a very fine-grain form of Thread-Level Parallelism (TLP) is
highly affected by the thread synchronization overhead generated
by these APIs. Other synchronization methods, possibly with
hardware support, are required in order to make MB-level
parallelization more scalable.

Index Terms—Video Codec parallelization, H.264, Multipro-
cessor architectures.

I. INTRODUCTION

V IDEO applications had become a very important work-

load in multiple computing environments, ranging from

mobile media players to Internet servers. In order to deliver

the increasing levels of quality and compression efficiency

that new multimedia applications are demanding, in the recent

years a new generation of video coding standards have been

defined [1], [2]. Furthermore, the trend towards high quality

video systems has pushed the adoption of High Definition

(HD) digital video and even higher definitions are being

proposed [3], [4]. The combination of the complexity of

new video Codecs and the higher quality of HD systems

has resulted in an important increase in the computational

requirements of the emerging video applications [5], [6].

Parallelization at different levels has emerged as one of the

solutions for providing the required performance.

At the same time there, there is a paradigm shift in computer

architecture towards chip multiprocessors (CMPs). In the

past performance has improved mainly due to higher clock

frequencies and architectural approaches to exploit instruction-

level parallelism (ILP). It seems, however, that these sources

of performance gains are exhausted. New techniques to ex-

ploit more ILP are showing diminishing results while being

costly in terms of area, power, and design time. Also clock

frequency increase is flattening out, mainly because pipelining

has reached its limit. As a result, the increasing number of

transistors per chip are now dedicated to include multiple cores

per chip. Following the current trend in multicore designs it

is expected that the number of cores on a CMP will double

every processor generation, resulting in hundreds of cores per

die in the near future [7], [8]. A central question is whether

applications scale to benefit from the increasing number of

cores in the future CMPs.

CMPs are good candidates for speeding-up video codecs,

but only in the case that the later can be effectively paral-

lelized. As a result, an important research effort has been made

in the last years for developing techniques for parallelization

of advanced video codecs like H.264 [9], [10], [11]. One of the

most promising techniques is the parallelization at the level of

macroblocks (MBs), in which small blocks of the video frame

are processed in parallel. This type of parallelization has been

presented in theoretical and simulation analysis as scalable and

efficient, but there has not been an extensive analysis on real

parallel platforms. In this paper we investigate the performance

scalability of Macroblock-level parallelization for the H.264

decoder on a cache coherent Non-uniform Memory Access

(cc-NUMA) Shared Memory Multiprocessor (SMP). Although

cc-NUMA SMPs have a different architecture constraints than

Revista Avances en Sistemas e Informática, Vol. 6 No. 1, Medellı́n, Junio de 2009, ISSN 1657-7663

2 Revista Avances en Sistemas e Informática, Vol. 6 No. 1, Medellin, Junio de 2009, ISSN 1657-7663

CMPs they share common features allowing this study to

present useful insights for porting video codec applications

to multicore architectures.

The paper is organized as follows. First, in section II we

present a brief introduction to the H.264 video codec standard

and we discuss the parallelization strategy that we have used.

Then, in section III we present the methodology used for this

study including the benchmarks and computing platform. In

section IV we present results obtained in the SMP machine.

An finally, in section VI we present the conclusions and future

work.

II. PARALLELIZATION OF H.264

Fig. 1. Block diagram of the decoding process.

Currently, H.264 is one of the the best video coding stan-

dards in terms of compression and quality. It is used in HD-

DVD and blu-ray Disc, and many countries are using/will use

it for terrestrial television broadcast, satellite broadcast, and

mobile television services. It has a compression improvement

of over two times compared to previous standards such as

MPEG-4 ASP and MPEG-2 [1]. Figure 1 depicts a block

diagram of the decoding process of H.264. The main kernels

are Prediction (intra prediction or motion estimation), Discrete

Cosine Transform (DCT), Quantization, Deblocking filter, and

Entropy Coding. These kernels operate on macroblocks (MBs),

which are blocks of 16 × 16 pixels, although the standard

allows some kernels to operate on smaller blocks, down to

4× 4. More details about H.264 video standard can be found

in [12], [13].

H.264/AVC is based on the same block-based motion

compensation and transform-based coding framework of prior

MPEG video coding standards. It provides higher coding

efficiency through added features and functionality that in turn

entail additional complexity. In order to provide the required

performance for HD applications it is necessary to exploit

Thread Level Parallelism (TLP)

Macroblock(MB)-level parallelization has been proposed as

a scalable and effective technique for parallelizing the H.264

decoder [9], [14], [11], [15], [16]. It can scale to a large

number of processors without depending on coding options of

the input videos, and without affecting significantly the latency

of the decoding process.

Fig. 2. MB-level Parallelism Inside a Frame

In H.264 usually MBs in a frame are processed in scan

order, which means starting from the top left corner of the

frame and moving to the right, row after row. To exploit

parallelism between MBs inside a frame it is necessary to

take into account the dependencies between them. In H.264,

motion vector prediction, intra prediction, and the deblocking

filter use data from neighboring MBs defining a structured set

of dependencies. These dependencies are shown in Figure II.

MBs can be processed out of scan order provided these

dependencies are satisfied. Processing MBs in a diagonal

wavefront manner satisfies all the dependencies and at the

same time allows to exploit parallelism between MBs. We

refer to this parallelization technique as 2D-Wave [9].

It is important to note that, due to the sequential behavior

of the entropy decoding kernel it should be decoupled from

the rest of macroblock decoding. In our implementation, first

CABAC entropy decoding is performed for all the MBs in

a frame and the results are stored in an intermediate buffer.

Once entropy decoding is performed, the decoding of MBs is

executed in parallel using the 2D-wave strategy.

A. Theoretical Maximum Speed-up

Assuming that the time to process each MB is constant, that

there is not overhead for thread synchronization and that there

is an unlimited number of processors then we can estimate

the theoretical maximum performance from the 2D-wave MB

parallelization. The maximum speed-up can be calculated as

follows: Let mb width and mb height be the width and

height of the frame in macroblocks respectively. Then, the time

for processing all the macroblocks in sequential and parallel

way are Tseq and Tpar respectively:

Tseq = mb width ∗ mb height

Tpar = mb width + (mb height − 1) ∗ 2)

Taken that into account, the maximum theoretical speed-up

and the maximum number of processors can be calculated as

follows:

Max speed up =
T seq

T par

Max proc = round((mb width + 1)/2)

In table I the values of Tseq and Tpar for different frame

sizes are shown. As can be seen, the parallelization scales with

Performance Evaluation of Macroblock-level Parallelization of H.264 Decoding on a cc-NUMA Multiprocessor Architecture – Alvarez et al. 3

TABLE I
COMPUTATIONAL WORK, CRITICAL PATH AND MAXIMUM SPEED UP OF PARALLELIZATION FOR DIFFERENT RESOLUTIONS

Video Resolution Pixel MB Tseq Tpar Max. Max.

Resolution Resolution Speedup processors

Standard (SD) 720x576 45x36 1620 115 14.09 23

High (HD) 1280x720 80x45 3600 168 21.43 40

Full High (FHD) 1920x1080 120x80 8160 254 32.13 60

Quad Full High (QFHD) 3840x2160 240x160 32400 508 63.78 120

Ultra High (UHD) 7680x4320 480x320 129600 1018 127.31 240

the resolution of the image. For Full High Definition (FHD)

resolution the theoretical maximum speedup is 32.13X when

using 60 processors.

III. EVALUATION PLATFORM

Throughout this paper we use the HD-VideoBench [17],

a benchmark for testing HD video coding applications. The

bechmark includes four video test sequences with different

motion and spatial characteristics. All movies are available in

three formats: 720×576 (SD), 1280×720 (HD), 1920×1088

(FHD). Each movie has a frame rate of 25 frames per second

and has a length of 100 frames.

H264 encoding was done with the X264 encoder using

the following options: 2 B-frames between I and P frames,

16 reference frames, weighted prediction, hexagonal motion

estimation algorithm (hex) with maximum search range 24,

one slice per frame, and adaptive block size transform. Movies

encoded with this set of options represent the typical case

for HD content. The H.264 decoder is a modified version of

FFmpeg [18] for supporting 2D-wave parallelization.

A. Architecture

The application was tested on a SGI Altix which is a

distributed shared memory (DSM) machine with a cc-NUMA

architecture. The basic building block is this DSM system

is the blade. Each blade has two dual-core Intel Itanium-II

processors, 8GB of RAM and an interconnection module. The

interconnection of blades is done using a high performance

interconnect fabric called NUMAlink-4 capable of 6.4 GB/s

peak bandwidth through two 3.2 GB/s unidirectional links (see

figure III-A). The complete machine has 32 nodes with 2 dual-

core processors per node for a total of 128 cores and a total

of 1TB of RAM.

Each processor in the system is a Dual-Core Intel Itanium2

processor running at 1.6 GHz. This processors has a 6-wide,

8-stage deep, in order pipeline. The resources consist of six

integer units, six multimedia units, two load and two store

units, three branch units, two extended-precision floating point

units, and one additional single-precision floating point unit

per core. The hardware employs dynamic prefetch, branch

prediction, a register scoreboard, and non-blocking caches. All

the three levels of cache are located on-die. The L3 cache is

accessed at core speed, providing up to 8.53 GB/s of data

bandwidth. The Front Side Bus (FSB) runs at a frequency of

533 MHz.

The compiler used was gcc 4.1.0 and the operating system

was Linux with kernel version 2.6.16.27. Profiling information

was taken using the Paraver tool with traces generated using

Fig. 3. Architecture of the cc-NUMA Multiprocessor

the source-to-source Mercurium compiler and the Mintaka

trace generator [19].

The application was executed on the SMP machine using

“cpusets” and “dplace” options. Cpusets are objects in the

linux kernel that enable to partition the multiprocessor ma-

chine by creating separated execution areas. By using them

the application has exclusive use of all the processors. With

the dplace tool, memory allocation is done taking into account

the cc-NUMA architecture.

B. Programming Model

Fig. 4. Dynamic Task Model Diagram

Our implementation is based on a dynamic task model in

which a set of threads is activated when a parallel region

4 Revista Avances en Sistemas e Informática, Vol. 6 No. 1, Medellin, Junio de 2009, ISSN 1657-7663

is encountered. In the case of the 2D-wave parallelization a

parallel region is the decoding of all MBs in a frame. Each

parallel region is controlled by a frame manager, which consist

of a thread pool, a task queue, a dependence table and a control

thread as showed in Figure III-B.

The thread pool consists of a group of worker threads that

wait for work on the task queue [20]. The generation of

work on the task queue is dynamic and asynchronous. The

dependencies of each MB are expressed in a dependence table.

When all the dependencies for a MB are resolved a new task

is inserted on the task queue. Any thread from the thread pool

can take this task and process it. When a thread finish the

processing of a MB it updates the table of dependencies and if

it founds that another MB has resolved its dependencies it can

insert a new task into the task queue. Finally, the control thread

is responsible for handling all the initialization and finalization

tasks that are not parallelizable.

As a further optimization step a tail-submit method has

been implemented in which each worker thread can process

MBs directly without passing through the task queue. With

the tail-submit optimization a thread that has decoded a MB

checks whether the dependencies of its neighboring right and

down-left MBs has been resolved. If at least one of these

neighbor MBs is ready to be processed the current worker

thread continues decoding that MB directly. If both of them

are ready, the worker thread submit one to the task queue

and process the other directly. If there are not MBs ready, the

worker thread access the task queue to wait for a new MB

to be decoded. This technique has the advantage of dynamic

distributed control, low thread management overhead, and

also exploits spatial locality, reducing the data communication

overhead, as we will show later.

The dynamic task model was implemented using POSIX

threads. Synchronization between threads and access to the

task queue was implemented using blocking synchronization

with POSIX real-time semaphores. Atomicity of the read

and write operations is guaranteed by using mutexes. Both

synchronization objects are blocking, which means that the op-

erating system (OS) is responsible for the activation of threads.

The access to the table of dependencies was implemented

with atomic instructions. An atomic operation dec and fetch

is used for decrementing the counter of dependencies of a

particular MB and detecting if that count has reached the zero

value.

IV. PERFORMANCE ANALYSIS

One of the main factors that affects the scalability of the 2D-

wave parallelization is the allocation (or scheduling) of MBs

to processors. In this paper we have evaluated three different

scheduling algorithms. The first one is a static scheduling

which assumes constant processing time. Second, a dynamic

scheduling mechanism based on the task queue model in which

the processing order is defined dynamically. And finally, dy-

namic scheduling was enhanced with tail submit optimization

in which processors can decode MBs directly without passing

through the task queue.

The application was executed for the three scheduling

algorithms with 1 to 32 processors. Although the machine has

128 processors, executions with more than 32 processors were

not carried out because the speed-up limit is always reached

before that point. Speed-up is calculated against the original

sequential version. The speed-up reported (unless the contrary

is explicitly said) is for the parallel part which corresponds

to the decoding of all MBs in a frame without considering

entropy decoding. In all the speed-up results the value for

one thread is the normalized execution time for the sequential

version. The other points represent the execution time for the

parallel version. N-thread number means 1 control thread and

N-1 decoder threads.

In figure IV the average speed-up for the different schedul-

ing approaches is presented. In the next sections each one is

going to be discussed in detail.

A. Static scheduling

Static scheduling means that the decoding order of MBs is

fixed and a master thread is responsible for sending MBs to

the decoder threads following that order. The predefined order

is a zigzag scan order which can lead to an optimal schedule

if MB processing time is constant. When the dependencies of

an MB are not ready the master thread waits for them.

Figure IV shows the speed-up of static scheduling. The

maximum available speed-up reached is 2.51 when using 8

processors (efficiency of 31%). Adding more processors do

not result in more performance, instead there is a big reduction

in speed-up. This is due to the fact that MB processing time is

variable and the static schedule fails to discover the available

parallelism. Most of the time the master thread is waiting for

other threads to finish.

B. Dynamic scheduling

In this scheme production and consumption of MBs is

made through the centralized task queue. The task queue

has been implemented using blocking synchronization. This

makes the programming easier but also involves the OS in the

scheduling process. Since processing MBs is very fine grained,

the interaction of the OS causes a significant overhead as we

will show later.

In figure IV the speed-up for the dynamic scheduling ver-

sion is shown. A maximum speed-up of 2.42 is found when 10

processors are used. This is lower than the maximum speed-up

for the static scheduling. Although the dynamic scheduling is

able to discover more parallelism, the overhead for submitting

MBs to and getting MBs from the task queue is so big that

it jeopardizes the parallelization gains. In the next section we

are going to analyze in detail the different sources of this

overhead.

1) Execution phases: As mentioned, the parallel system

consists of a combination of a master thread and a group of

worker threads. In order to analyze the performance of each

worker thread we divided the execution of each one into seven

phases. In Figure 6 the pseudo-code of each worker thread is

presented illustrating the different phases. The resulting phases

are:

- wait start signal: Synchronization point at the beginning

of the frame.

Performance Evaluation of Macroblock-level Parallelization of H.264 Decoding on a cc-NUMA Multiprocessor Architecture – Alvarez et al. 5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
v
e
ra

g
e
 S

p
e
e
d
u
p

Number of threads

tail submit right-first
tail submit down-left-first

static scheduling
dynamic scheduling

Fig. 5. Speed-up of Macroblock Decoding using Different Scheduling Approaches

decode_mb_worker:

FOR-EACH frame-in-sequence:

wait_start_signal()

WHILE no-end-of-frame

get_mb()

copy_mb()

decode_mb()

update_dep()

ready_mb()

submit_mb()

Fig. 6. Pseudo-code of 2D-wave with Dynamic Scheduling

- get mb: Take one MB from the task queue, if there are

no MBs available remains blocked until another thread

puts one MB.

- copy mb: Copy of CABAC values from the intermediate

buffer to the local thread structures.

- decode mb: Actual work of macroblock decoding.

- update dep: Update the table of MB dependencies.

- ready mb: Analysis of each new ready to process MB.

- submit mb: Put one MB into the task queue. If the task

queue is full the thread remains blocked until another

thread removes one MB.

In Table II the execution time of the different phases is

presented in absolute time (us). The first conclusion that can

be extracted is that the decoding time for each MB increases

with the number of processors. When executing with 16

processors the time spent in actual decoding increases by a

factor of 2.72 compared to the single thread case. This is

mainly due to the cc-NUMA architecture of the machine. The

dynamic scheduling algorithm do not consider data locality

when assigning tasks to processors. It might be the case that

a processor take a MB which has its data dependencies in

another processor in a remote node, then all the memory access

should cross the NUMA interconnection network and pay a

high latency for that. As more processors are involved in the

parallel decoding more dispersed is going to be the data. A

similar behaviour occurs for the copy mb phase. The source

area of these copies is the CABAC intermediate buffer that

resides in the main memory which, in turn, is distributed across

the nodes. The copy from a remote node implies a costly off-

chip access.

The phases that exhibit a major increase in execution time

are get mb and submit mb. For 32 processors they have a

slowdown of 42.82 and 39.36 respectively. This enormous

increase in the execution time reveals a contention problem.

In dynamic scheduling all the worker threads get MBs from

(and submit MBs to) the task queue creating an important

pressure on it. This can be illustrated with the time required

to submit one MB to the task queue. Since the size of the

queue is big enough to put all the MBs in a frame there are

not threads that have to wait for an empty slot. Because of that,

all the time spent in submit mb is overhead and contention.

Submitting one element to the queue when there is only one

worker thread takes 7 us, but when there are 32 threads it

takes 40 times more.

The last column in the table shows the ratio of actual com-

putation and overhead. For less than 4 processors the overhead

is in the range of the average MB processing time, but there

is an enormous increase in the overhead with the number of

processors. For more than 24 processors the overhead is more

than 10 times the processing time. From this we can conclude

that the centralized task queue which allows only a single

reader and a single writer becomes the bottleneck. A more

distributed algorithm like tail submit or work stealing could

help to reduce this contention.

C. Dynamic scheduling with Tail submit

As a way to reduce the contention on the task queue, the

dynamic scheduling approach was enhanced with a tail submit

6 Revista Avances en Sistemas e Informática, Vol. 6 No. 1, Medellin, Junio de 2009, ISSN 1657-7663

TABLE II
AVERAGE EXECUTION TIME FOR WORKER THREADS WITH DYNAMIC SCHEDULING (TIME IN US)

Threads decode mb copy mb get mb update mb ready mb submit mb overhead-ratio

1t 22.65 1.62 4.89 1.01 2.38 5.03 0.67

4t 33.09 2.95 9.71 1.36 2.86 12.44 1.30

8t 41.88 3.90 16.67 1.61 3.02 20.84 2.05

16t 61.78 5.94 55.95 2.25 3.55 80.28 6.57

32t 78.75 7.25 209.37 2.70 4.36 201.01 18.88

optimization [21]. With this optimization not all MBs have

to pass across the queue. When a thread found a ready to

process MB it process that MB directly without any further

synchronization. There are two ordering options for doing the

tail submit process as shown in figure IV-C. In the first one,

the MB that is executed directly is the right neighbor of the

current MB; in the second one, the selected block is the down-

left MB.

Fig. 7. Right-first and Down-left-first orders for doing Tail-submit

In Figure IV the speed-up of tail-submit implementations is

presented. In the down-left-first version a maximum speed-up

of 6.85 is achieved with 26 processors (efficiency of 26%).

From this point the speed-up is saturated and decreases a bit.

In the same figure, it is shown the speed-up of the tail-submit

version using the right-first order, a maximum speed-up of 9.53

is achieved with 24 processors (efficiency of 39.7%). Going

beyond 24 processors results in diminishing benefits. These

results show that the tail-submit version with right-first MB

order is more scalable than with the down-left MB order. This

is due to the fact the right-first order exploits better the data

locality between MBs. Data from the left block is required by

the deblocking filter stage and by using the right-first order

the values of the previous MB remain in the cache.

1) Execution Phases: In Figure 8 the pseudo-code of the

dynamic scheduling with tail submit version is shown. The

main difference with the code of dynamic scheduling (see

Figure 6) is that the decoding of MBs do not require always

a get mb operation.

In Table III the profiling results for tail submit version are

shown. Different from the case of static scheduling, in tail

submit MB decoding time remains almost constant with the

number of threads. Decoding one MB takes 21.7 us in average

and each thread has a slow-down of 1.39 when executed

with 32 threads. The same applies for the copy mb operation.

Because the tail submit with right-first order exploits the data

locality of neighbor MBs the decode and copy operations are

not affected by data dispersion as the dynamic scheduling

version.

decode_mb_worker:

FOR-EACH frame-in-sequence:

wait_start_signal()

WHILE no-end-of-frame

get_mb()

DO:

copy_mb()

decode_mb()

update_dep()

ready_mb()

submit_mb()

WHILE ready_mbs

Fig. 8. Pseudo-code of 2D-wave with Dynamic Scheduling and Tail Submit

On of the most important effects of the tail submit opti-

mization is the reduction in the time spent in submit mb. This

time increases with the number processors but the absolute

value is less than the dynamic scheduling version. The version

with 32 threads spend 3.3 times more than the single thread

version, but compared the dynamic scheduling it takes 8 times

less. With tail submit there is less contention because with

there are less submissions to the task queue. The last column

in table III shows the percentage of MBs that are processed

via tail submit, that mean, the MBs that do not pass through

the task queue. For one thread, only at the end of the row

the decoder thread goes to the queue and ask for a new MB

resulting in a 90% of the MBs are processed by tail submit.

When more than one thread comes into play then the number

of tail submits reduces. That’s because threads do not wait

for other to finish, instead if there is not direct work to do

they go to the task queue and wait there for new MBs. As

a result, when there are 32 processors only 48% of the MBs

are processed by tail submit, and at this point more MBs are

processed through the queue than by tail submit. This is one

of the main reasons for not getting more speed-up.

The most significant contributor to the execution time is

get mb which represent the time waiting for and getting MBs

to appear in the task queue. Time waiting on the task queue

is almost 140 times bigger on 32 processors than on a single

thread. For 32 threads this function represents 40.7% percent

of the total thread time. In this case, the increase in the waiting

time is due to the lack of parallel MBs because threads only

go to the task queue when they do not found MBs ready to be

processed. That means that with 24 processors the scalability

limit of the tail submit version has been found.

2) Thread synchronization overhead: The previous analysis

have shown that operations of getting and submitting MBs

to/from the task queue have a significant overhead on the final

performance and scalability of the parallelization. In order to

understand the sources of this overhead we have performed a

Performance Evaluation of Macroblock-level Parallelization of H.264 Decoding on a cc-NUMA Multiprocessor Architecture – Alvarez et al. 7

TABLE III
AVERAGE EXECUTION TIME FOR WORKER THREADS IN DYNAMIC SCHEDULING WITH TAIL-SUBMIT (TIME IN US)

Threads decode mb copy mb get mb update dep ready mb submit mb overhead-ratio % of tail submit

1t 21.7 1.5 6.1 1.0 1.0 7.5 0.17 90.8

4t 24.2 1.9 55.9 1.1 1.1 7.8 0.22 79.8

8t 24.9 2.1 132.4 1.3 1.1 8.6 0.30 75.2

16t 27.5 2.4 265.3 1.6 1.1 10.1 0.68 58.5

32t 30.1 2.8 853.1 2.1 1.1 24.8 1.85 48.4

get_mb_from_taskq(int mb_xy):

sem_wait(full_sem);

mutex_lock(read_mutex);

mb_xy = read_queue(task_queue);

mutex_unlock(read_mutex);

sem_post(empty_sem);

return mb_xy

Fig. 9. Pseudo-code of get mb function for obtaining MBs from the task
queue

more detailed profiling analysis. The code in Figure 9 shows

the implementation of the get mb function which takes one

MB from the task queue. Our implementation is based on

two semaphores (using POSIX real-time semaphores): one

for available elements in the queue (full sem) and the other

for empty slots in the queue (empty sem). Reading from the

queue requires a critical section which has been implemented

using mutexes (from POSIX threads). The implementation for

the submit mb function is very similar to this one with the

only difference that there is a write operation instead of the

read and the semaphores are used in an inverse order.

In Figure 10 the average execution time of the get mb and

submit mb functions is presented. The most important part

for the first one is related to the semaphore at the beginning

(sem wait) which represents the waiting time for elements in

the task queue. As the number of processors increases this

value becomes bigger. From 1 to 2 threads the execution

time increase by a factor of 16.35. For 32 processors this

time is 400X bigger than for 1 thread. In the case of a large

number of processors this big waiting time indicates that there

are no more MBs to process and that the parallelism of the

application has reached its limit. But for a small number

of processors when there are independent MBs most of the

time spent in sem wait is overhead due to the intervention

of the OS. A similar behavior can be noted with the increase

in the execution time of the release operation in the output

semaphore. This operation signals the availability of a new

element in the task queue, when the number of thread increases

the number of waiters in the task queue increases as well.

It seems that the time required to signal the availability of

one MB depends on the number of waiters, which is not a

desirable feature. What should be appropriated is to take one

of the waiter threads (the first one in a queue, for example)

and activate it independent of the number of other waiters in

the queue. This is an implementation issue of the sem post

API.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1t 2t 4t 8t 16t 24t 31t
A

v
e

ra
g

e
 t

im
e

 f
o

r
a

ll
th

re
a

d
s
 [

u
s
]

Number of processors

sem_post
mutex_unlock

read_queue
mutex_lock

sem_wait

(a) tail submit get mb

 0

 5

 10

 15

 20

 25

1t 2t 4t 8t 16t 24t 31t

A
v
e

ra
g

e
 t

im
e

 f
o

r
a

ll
th

re
a

d
s
 [

u
s
]

Number of processors

sem_post
mutex_unlock

write_queue
mutex_lock

sem_wait

(b) tail submit submit mb

Fig. 10. Distribution of Execution Time for the get mb and submit mb
functions in Dynamic Scheduling with Tail submit

V. RELATED WORK

Several works deal with problem of parallelization of the

H.264 video Codec. The H.264 codec can be parallelized

either by a task-level or data-level decomposition. In task-

level decomposition individual tasks of the H.264 Codec

are assigned to processors while in data-level decomposition

different portions of data are assigned to processors running

the same program.

Some works have presented results for task-level paral-

lelization [22], [23]. Task-level parallelism and macroblock

pipelining works well for a reduced number of processors

(less than 4 typically) but they do not scale well for CMP

architectures because it is very complicated to further divide

the mapping of tasks for using more processors. As the

8 Revista Avances en Sistemas e Informática, Vol. 6 No. 1, Medellin, Junio de 2009, ISSN 1657-7663

resolution of the image increase this approach is not enough

for providing the required performance for real-time operation.

In the case of data-level decomposition there are different

strategies depending on the granularity of the data division.

Some works focus on coarse grained parallelization like

Group-of-frames (GOP), frame and slice-level parallelism and

combinations between them [24], [10], [25], [26]. These

coarse-grain parallelization techniques are not scalable be-

cause dependencies between frames, or are not appropriate for

CMPs due to to false sharing in the caches. Moreover all the

proposals based on slice-level parallelism have the problem of

the inherent loss of coding efficiency due to having a large

number of slices.

MB-level parallelism has been proposed in several works.

Van der Tol et al. [9] proposed the technique but they did not

present an evaluation of it on a real or simulated platform.

Chen et al. [14] evaluated an implementation on Pentium

machines with a reduced number of processors. They don’t

present scalability results and work with lower resolutions. A

combination of temporal and spatial MB-level parallelism for

H.264 encoding has been discussed by Zhao et al. [15]. A

limitation of this approach is that a static row scheduler is

used resulting in poor load balancing. Chong et al [16] have

proposed to add a prepass stage to the decoder. Using the

information from the preparsing pass a dynamic schedule of

the MBs of the frame is calculated and MBs are assigned

to processors dynamically. Although they present a dynamic

scheduling algorithm it seems to be not able of discovering

all the MB level parallelism that is available in a frame.

Hoogerbrugge et al [21] have evaluated the 2D-wave paral-

lelization for H.264 decoding using a simulated multicore.

The architecture is composed of VLIW media processors with

a cache coherent memory organization. They evaluated the

original 2D-wave and proposed the tail submit optimization.

The main point of this paper is on comparing different schemes

for multithreading rather than evaluating the scalability of the

H.264 decoding. Additionally the simulated system does not

include a detailed model of the memory subsystem hiding

the effect of accesses to the main memory. Moreover they

have restricted the coding tools of the H.264 encoder in order

to simplify the decoder. Our paper presents an evaluation

of a real H.264 decoder (supporting most of the features of

the standard) on a real platform. Because of that our results

includes all the effects of the memory subsystem in the final

performance.

Azevedo et al [27] have evaluated a technique that exploits

intra- and inter-frame MB-level parallelism (called 3D-wave).

They compared this technique with 2D-wave and showed that

the former is more scalable than the later. Their analysis

has been made on a simulation platform of embedded media

processors that does not include a detailed model of the

memory hierarchy. Anyway, those results are complementary

to the presented in this paper. The architecture used for

their simulations include a sophisticated hardware support for

thread synchronization ad scheduling a achieving a perfor-

mance close to the theoretical maximum. This confirms the

results from our paper in which we show the necessity of

special support for thread synchronization.

VI. CONCLUSIONS

In this paper we have investigated the parallelization of the

H.264 decoder at the macroblock level. We have implemented

such a parallelization on a multiprocessor architecture.

From our implementation we can conclude that the best

scheduling strategy is the combination of dynamic scheduling

with tail submit. Dynamic scheduling deals with the problem

of variable decoding time by assigning MBs to processors

as soon as they have resolved all their dependencies. But

dynamic scheduling suffers from a big contention overhead

on a centralized task queue and inefficiencies in the thread

synchronization API. By using tail submit the number of

threads that access the task queue is reduced and most of

the MBs are processed directly by the worker threads with-

out requiring any further synchronization. Additionally tail

submit with right-first order exploits data locality reducing

the external memory pressure. Still there is a considerable

overhead from thread synchronization which comes from the

very low performance of the POSIX real-time semaphores on

the evaluated architecture. The use of alternative synchroniza-

tion mechanisms like lock-free algorithms, or other hardware

supported synchronization mechanisms can help to increase

the efficiency of the parallelization.

A possible solution, from the architecture point of view,

is to include hardware support designed specifically for thread

synchronization and scheduling. By doing that, it is possible to

eliminate the overhead of thread synchronization and augment

the efficiency of the parallelization. An important question that

remains open is what is the required hardware support that can

give high performance and, at the same time, can be scalable

to a large number of processors and general for a range of

applications.

Another important limitation of the parallelization scalabil-

ity is the memory performance. In a cc-NUMA architecture

not predictable accesses, like the ones performed in the motion

compensation stage, result in off-chip accesses that have a high

latency. In a multicore architecture this could be translated as

a high demand of bandwidth for the external memory. This is

an open issue and we are working on hardware optimizations

strategies for augmenting the locality of the data accesses.

ACKNOWLEDGEMENTS

This work has been supported by the European Commission

in the context of the SARC project (contract no. 27648), the

Spanish Ministry of Education (contract no. TIN2007-60625)

and HiPEAC (The European Network of Excellence on High-

Performance Embedded Architecture and Compilation).

REFERENCES

[1] G. J. Sullivan and T. Wiegand, “Video Compression–From Concepts to
the H.264/AVC Standard,” Proceedings of the IEEE, vol. 93, no. 1, pp.
18–31, Jan 2005.

[2] I. Richardson, H.264 and MPEG-4. Video Compression for Next-

generation Multimedia. Chichester, England: Wiley, 2004.

[3] T. Sikora, “Trends and Perspectives in Image and Video Coding,”
Proceedings of the IEEE, vol. 93, no. 1, pp. 6–17, Jan 2005.

[4] M. Sugawara, “Super hi-vision — research on a future ultra-hdtv
system,” European Broadcasting Union, Tech. Rep., 2008.

Performance Evaluation of Macroblock-level Parallelization of H.264 Decoding on a cc-NUMA Multiprocessor Architecture – Alvarez et al. 9

[5] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, “Video Coding with H.264/AVC: Tools,
Performance, and Complexity,” IEEE Circuits and Systems Magazine,
vol. 4, no. 1, pp. 7–28, Jan 2004.

[6] M. Horowitz, A. Joch, and F. Kossentini, “H.264/AVC Baseline Profile
Decoder Complexity Analyis,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 13, no. 7, pp. 704–716, July 2003.
[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006.

[8] S. Borkar, “Thousand core chips: a technology perspective,” in DAC

’07: Proceedings of the 44th annual conference on Design automation.
ACM, 2007, pp. 746–749.

[9] E. B. van der Tol, E. G. T. Jaspers, and R. H. Gelderblom, “Mapping
of H.264 Decoding on a Multiprocessor Architecture,” in Proceedings

of SPIE, 2003.
[10] Y.-K. Chen, X. Tian, S. Ge, and M. Girkar, “Towards Efficient Multi-

level Threading of H.264 Encoder on Intel Hyper-threading Architec-
tures,” in Proceedings International Parallel and Distributed Processing

Symposium, Apr 2004.
[11] C. Meenderinck, A. Azevedo, M. Alvarez, B. Juurlink, and A. Ramirez,

“Parallel Scalability of Video Decoders,” Journal Journal of Signal

Processing Systems, August 2008.
[12] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A.Luthra, “Overview of

the H.264/AVC Video Coding Standard,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July
2003.

[13] “ISO/IEC 14496-10 and ITU-T Rec H.264, Advanced Video Coding,”
2003.

[14] Y. Chen, E. Li, X. Zhou, and S. Ge, “Implementation of H. 264 Encoder
and Decoder on Personal Computers,” Journal of Visual Communica-

tions and Image Representation, vol. 17, 2006.
[15] Z. Zhao and P. Liang, “Data partition for wavefront parallelization of

H.264 video encoder,” in IEEE International Symposium on Circuits

and Systems., 2006.
[16] J. Chong, N. R. Satish, B. Catanzaro, K. Ravindran, and K. Keutzer,

“Efficient parallelization of h.264 decoding with macro block level
scheduling,” in IEEE International Conference on Multimedia and Expo,
July 2007, pp. 1874–1877.

[17] M. Alvarez, E. Salami, A. Ramirez, and M. Valero, “HD-VideoBench: A
Benchmark for Evaluating High Definition Digital Video Applications,”
in IEEE Int. Symp. on Workload Characterization, 2007. [Online].
Available: http://people.ac.upc.edu/alvarez/hdvideobench

[18] “FFmpeg Multimedia System.” 2005, http://ffmpeg.mplayerhq.hu/.
[19] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “PARAVER: A Tool to

Visualize and Analyze Parallel Code,” in Proceedings of WoTUG-18:

Transputer and occam Developments, P. Nixon, Ed., mar 1995, pp. 17–
31.

[20] M. Korch and T. Rauber, “A comparison of task pools for dynamic load
balancing of irregular algorithms,” Concurr. Comput. : Pract. Exper.,
vol. 16, no. 1, pp. 1–47, 2003.

[21] J. Hoogerbrugge and A. Terechko, “A Multithreaded Multicore System
for Embedded Media Processing,” Transactions on High-Performance

Embedded Architectures and Compilers, vol. 3, no. 2, pp. 168–187, June
2008.

[22] A. Gulati and G. Campbell, “Efficient Mapping of the H.264 Encoding
Algorithm onto Multiprocessor DSPs,” in Proc. Embedded Processors

for Multimedia and Communications II, vol. 5683, no. 1, March 2005,
pp. 94–103.

[23] O. L. Klaus Schoffmann, Markus Fauster and L. Böszörmeny, “An
Evaluation of Parallelization Concepts for Baseline-Profile Compliant
H.264/AVC Decoders,” in Lecture Notes in Computer Science. Euro-

Par 2007 Parallel Processing, August 2007.
[24] A. Rodriguez, A. Gonzalez, and M. P. Malumbres, “Hierarchical paral-

lelization of an h.264/avc video encoder,” in Proc. Int. Symp. on Parallel

Computing in Electrical Engineering, 2006, pp. 363–368.
[25] T. Jacobs, V. Chouliaras, and D. Mulvaney, “Thread-parallel mpeg-2,

mpeg-4 and h.264 video encoders for soc multi-processor architectures,”
IEEE Transactions on Consumer Electronics, vol. 52, no. 1, pp. 269–
275, Feb. 2006.

[26] M. Roitzsch, “Slice-Balancing H.264 Video Encoding for Improved
Scalability of Multicore Decoding,” in Work-in-Progress Proceedings

of the 27th IEEE Real-Time Systems Symposium (RTSS), 2006.

[27] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko, J. Hooger-
brugge, M. Alvarez, and A. Rammirez, “Parallel H.264 Decoding on an
Embedded Multicore Processor,” in Proceedings of the 4th International

Conference on High Performance and Embedded Architectures and

Compilers - HIPEAC, Jan 2009.

Mauricio Alvarez Mesa received the BSc degree in
electronic engineering from University of Antioquia,
Medellin, Colombia in 2000. From 2000 to 2002 he
was a teaching assistant at Department of Electronic
Engineering of the this University. In 2002 he joined
the Department of Computer Architecture of the
Technical University of Catalonia (UPC) where he
is doing his PhD. From 2006 he became teaching
assistant at UPC. He was a summer student intern
at IBM Haifa Research labs, Israel in 2007. His
research interest includes high performance architec-

tures for multimedia applications, vector processors, SIMD extensions, chip-
multiprocessor architectures and streaming architectures.

Alex Ramı́rez received the BSc, MSc, and PhD
degrees in computer science from the Universitat
Politecnica de Catalunya in 1995, 1997, and 2002,
respectively. He received the extraordinary award
for the best PhD dissertation. He is an associate
professor in the Computer Architecture Department
at the Universitat Politecnica de Catalunya and the
leader of the Computer Architecture Group at the
Barcelona Supercomputing Center. He was a sum-
mer student intern with Compaq’s Western Research
Laboratory (WRL), Palo Alto, California, from 1999

to 2000 and with Intel’s Microprocessor Research Laboratory, Santa Clara,
California, in 2001. His research interests include compiler optimizations,
high performance fetch architectures, multithreaded architectures, vector
architectures, heterogeneous multicore architectures hardware support for
programming models and simulation techniques. He has coauthored over
50 papers in international conferences and journals and supervised 3 PhD
students.

Cor Meenderinck received the MSc degree, with
honors, in electrical engineering from Delft Univer-
sity of Technology, the Netherlands. Currently, he is
working towards the PhD degree in the Computer
Engineering Laboratory of the Faculty of Electrical
Engineering, Mathematics, and Computer Science
of Delft University of Technology. His research
interests include computer architecture, chip multi-
processors, media accelerators, parallelization, de-
sign for power efficiency, task management, com-
puter arithmetic, nano electronics, and single elen-

tron tunneling.

Arnaldo Azevedo received the BSc degree in com-
puter science from the UFRN University, Natal, RN,
Brazil, in 2004 and the MSc degree in computer
science from UFRGS University, Porto Alegre, RS,
Brazil, in 2006. Since 2006, he is a doctoral candi-
date in the Computer Engineering Laboratory of the
Faculty of Electrical Engineering, Mathematics and
Computer Science of Delft University of Technol-
ogy, the Netherlands. He is currently investigating
multimedia accelerators architecture for multi-core
processors.

10 Revista Avances en Sistemas e Informática, Vol. 6 No. 1, Medellin, Junio de 2009, ISSN 1657-7663

Ben Juurlink is an associate professor in the
Computer Engineering Laboratory of the Faculty
of Electrical Engineering, Mathematics, and Com-
puter Science at Delft University of Technology,
the Netherlands. He received the MSc degree in
computer science, from Utrecht University, Utrecht,
the Netherlands, in 1992, and the Ph.D. degree
also in computer science from Leiden University,
Leiden, the Netherlands, in 1997. His research in-
terests include instruction-level parallel processors,
application-specific ISA extensions, low power tech-

niques, and hierarchical memory systems. He has (co-) authored more than
50 papers in international conferences and journals and is a senior member
of the IEEE and a member of the ACM.

Mateo Valero has been a full professor in the
Computer Architecture Department at the Univer-
sitat Politecnica de Catalunya (UPC) since 1983.
Since May 2004, he has been the director of the
Barcelona Supercomputing Center, National Center
of Supercomputing, Spain. He is the coordinator
of the European Network of Excellence on High-
Performance Embedded Architecture and Compila-
tion (HiPEAC). His research topics are centered in
the area of high-performance computer architectures.
He is a coauthor of more than 400 publications. He

has served in the organization of more than 200 international conferences. He
is a fellow of the IEEE and the ACM. He is an academic of the Royal Spanish
Academy of Engineering, a correspondent academic of the Royal Spanish
Academy of Sciences, and an academic of the Royal Academy of Science
and Arts. His research has been recognized with several awards, including
the 2007 Eckert-Mauchly Award, two National Awards on Informatics and
on Engineering, and the Rey Jaime I Award in basic research. He received a
Favourite Son Award from his hometown, Alfamen (Zaragoza), which named
their public college after him.

