
Optimisation of Multimedia Applications for the
Philips Wasabi Multiprocessor System

Demid Borodin∗, Andrei Terechko∗∗, Ben Juurlink∗, and Paulus Stravers∗∗

∗Computer Engineering Laboratory
Faculty of EEMCS, TU Delft
Mekelweg 4, 2628 CD Delft

The Netherlands

∗∗Philips Research Laboratory
Prof. Holstlaan 4

5656 AA Eindhoven
The Netherlands

E-mail: D.Borodin@EWI.TUDelft.NL
Phone: +31 (0)6 41861436, Fax: +31 (0)15 2784898

Abstract—Libavcodec is an open source software library
that contains many different audio/video codecs. In this
work, it is optimised and parallelised for the Philips Wasabi
chip multiprocessor, which is currently being developed at
Philips. Wasabi contains several DSPs and one or more
general-purpose processors. The TriMedia-style optimisa-
tions (in particular utilising the SIMD custom operations)
improve the performance of the MPEG2 and MPEG4 de-
coders by approximately 41% and 30%, respectively. Paral-
lelisation of the video encoder achieves a linear speedup for
up to 6 CPUs. Thereafter, it slightly levels off. Additional
work is required to make libavcodec more scalable so that it
can exploit more processors efficiently. In addition, an inter-
face between the TriMedia(s) executing libavcodec and the
general-purpose processors running host applications that
use libavcodec is proposed. This interface enables applica-
tions to efficiently use libavcodec running on the TriMedias,
without having to port the applications themselves to the Tri-
Media.

Keywords— libavcodec; TriMedia; multiprocessor; opti-
misation; VLIW architecture

I. I NTRODUCTION

The demand for computational power increases continu-
ously in the field of digital multimedia. The power of ded-
icated multimedia processors working alone has become
insufficient. Currently Philips considers utilising paral-
lel multiprocessor architectures for multimedia processing.
The advantages of dedicated multimedia processors com-
bined with parallelisation should open new possibilities for
computationally intensive multimedia tasks. In addition,
Philips considers using open source software quickly opti-
mised for the multimedia processors.

Libavcodec is an open source software library within
the FFmpeg project [3]. It contains many different au-
dio/video coders/decoders (codecs) and is known to be a
very fast MPEG4 codec [18], [7], [2]. It has been opti-
mised for several multimedia extensions including Intel’s
MMX [9], AMD’s 3DNow [5], and others. Wasabi is an
instance of the CAKE architecture [15], [16], a chip multi-
processor targeted at media applications which is currently
being developed at Philips Research. It consists of several
TriMedia [10] processors and one or more general-purpose
processors which communicate via a shared level-2 cache.
The TriMedia is a processor with a very long instruction
word (VLIW) architecture that supports many media oper-
ations.

The goals of this work are (1) to port libavcodec to the
TriMedia, (2) to improve performance by applying archi-
tecture specific optimisations, (3) to parallelise libavcodec
to exploit multiple processors, and (4) to provide an inter-
face between the TriMedia processor(s) executing libav-
codec and the general-purpose processor(s) running appli-
cation(s) that use libavcodec.

This paper is organised as follows.
In SectionII we describe the difficulties encountered

when porting FFmpeg to the TriMedia. FFmpeg exploits
many features of the most recent GNU C compiler (gcc),
whereas the TriMedia compiler accepts standard ANSI C.
Hence certain C constructs had to be replaced by others
and certain library functions had to be implemented.

SectionIII describes how libavcodec was optimised for
the TriMedia. Among the optimisations that have been ap-
plied are conventional optimisations such as algebraic sim-
plifications, techniques to increase instruction-level par-

mailto:D.Borodin@EWI.TUDelft.NL?Subject=By the link in "Optimisation of Multimedia Applications for the Philips Wasabi Multiprocessor System" paper

allelism such as branch elimination, and restricted point-
ers to inform the compiler that there is no aliasing. In
addition, we have used the custom operations to process
several short data types simultaneously in a SIMD fash-
ion. To measure performance a cycle-accurate simulator of
the TriMedia has been employed. For benchmarking sev-
eral high-resolution MPEG2 and MPEG4 video sequences
have been decoded. The optimisations improve the perfor-
mance of the MPEG2 and MPEG4 decoders by approxi-
mately 41% and 30%, respectively.

SectionIV describes the parallelisation of the video en-
coder which involved changing the interface from POSIX
pthreads to the TriMedia multi-threading API TM OSAL.
An almost linear speedup for up to 6 processors is
achieved. Additional work is required to make libavcodec
more scalable so that it can exploit more processors effi-
ciently.

Section V proposes an interface between libavcodec
running on the TriMedia(s) and applications running on
GPP(s). This interface enables applications to efficiently
use libavcodec running on the TriMedias, without having
to port the applications themselves to the TriMedia.

Finally, SectionVI draws conclusions of this work and
SectionVII provides suggestions for future work.

II. PORTING FFMPEG TO THETRIMEDIA

According to [11], the C programming language ac-
cepted by the TriMedia compilertmccis based on the fol-
lowing standards:
• American National Standard for Programming Languages–
C, ANS X3.159–1989
• ISO/IEC 9899:1990
• Technical Corrigendum 1 (1994) to ISO/IEC 9899:1990
• IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE 754-1985

“ANS X3.159–1989” is the basis for the later ISO stan-
dard “ISO/IEC 9899:1990,” which includes the prior stan-
dard entirely, with only minor editorial changes. Further
in the text, the ISO C is meant by “ANSI C” or “Standard
C”.

There are also extensions to ANSI C in the TriMedia
compiler, such as the concept of restricted pointers, as pro-
posed by the Numerical C extensions group in the proposal
X3J11/95-049, WG 14/N448 [6].

A. The C Language Changes Applied to FFmpeg

FFmpeg is written for the most recent GNU C compil-
ers. It utilises many features that are not supported by the
TriMedia compiler. Several examples are given below.

Structure assignments: given a structure definition such
as

typedef struct {
char ch;
int i;
float f;

} struct_type;

the structure assignment

struct_type struct_name;
struct_name =

(struct_type) { ’a’, 50, 0.5 };

must be replaced by

struct_type struct_name;
struct_name.ch = ’a’;
struct_name.i = 50;
struct_name.f = 0.5;

Structure initialisation: for the same structure type as in
the previous example, the initialisation

struct_type struct_name =
{ .f=0.5, .i=50 };

should be replaced by

struct_type struct_name =
{ 0, 50, 0.5 };

Declaration of arrays with non-constant dimensions: a
declaration such as

int int_array[w];

where w is not a constant, should be replaced by a function
call allocating memory dynamically:

int *int_array =
(int*) malloc(w * sizeof(int));

Finally, the attributes of the GNU C compiler are not
supported by the TriMedia compiler. They should be care-
fully eliminated. For example, the attribute

__attribute__(unused)

can be simply removed since it is only used to let the com-
piler know that no warnings should be given if variables
are unused. Normally the compiler would give a warning
about an unused variable.

B. Unsupported Library Functions and Type Declarations

There are some C library type declarations used in the
FFmpeg project that are not supported by the TriMedia
Compilation System (TCS). To solve this problem, FFm-
peg was extended with some include files, sometimes with
minor changes, taken from Linux standard include direc-
tories.

Besides that, several functions used in FFmpeg are not
present in TCS. FFmpeg was extended with the implemen-
tation of these functions. Due to the project time limita-
tion, not all these functions were implemented completely.

Instead, simplified versions were implemented, based on
some assumptions. For example, the functionssnprintf
and vsnprintf simply call the standard functionssprintf
andvsprintf respectively, which are available in the TCS
standard library. The argument controlling the maximum
length of the produced string is ignored in both cases. This
assumption turned out to be safe for FFmpeg.

C. Operating System Specific Features

There are some operating system (primarily Linux) spe-
cific features used in FFmpeg. The audio/video grabbing
implementation uses them, for example. These features
were disregarded, since they are out of scope of this work.

D. Other Porting Issues

When porting FFmpeg to Philips TriMedia, the follow-
ing aspects had to be also taken into account:

• The compiler had to be switched to Little Endian byte
ordering since the default is Big Endian and FFmpeg as-
sumes Little Endian.
• The TriMedia hardware does not support double-
precision floating-point (64-bit) operations. As FFm-
peg/libavcodec needs it, the compiler is switched to
double-precision floating-point simulation mode using the
-fp64 compiler command line option. Unfortunately, this
has a negative effect on performance since the simulation
is done in software.
• The first versions of the TriMedia do not support un-
aligned load and store operations. As they are used in
libavcodec, the environment had to be changed to the Tri-
Media 2270. That is, TCS 4.5 was used instead of TCS 4.2
which did not support the TriMedia 2270 architecture. The
compiler command-line option-target tm2270Minimalis
used to set the target architecture. The employed simula-
tor is tm2270siminstead oftmsim.

After the porting is finished, FFmpeg runs on the
tm2270simsimulator. The default memory size assumed
by the simulator is 8 MB. This is not sufficient for the ex-
periments, so the simulator was explicitly instructed to as-
sume 128 MB of memory space.

III. O PTIMISATION OF L IBAVCODEC FOR THE

TRIMEDIA

A. Introduction

The measure to determine a program’s performance
used in the work is the number of clock cycles required
to perform a task. The goal is to minimise the execution
time of a program, i.e. to minimise the number of clock
cycles as much as possible.

Taking into account the VLIW architecture of the tar-
get platform, the ideal case is when the processor is sat-
urated. That is, only the processor’s computing resources
(the number and configuration of the available functional
units) limit the performance of an application. The TriMe-
dia VLIW processor allows to issue 5 operations in one in-
struction (clock cycle), and ideally the amount of instruc-
tion level parallelism (ILP) should be sufficient to execute
5 useful operations every clock cycle.

Unfortunately in an unoptimised application there are
many factors that affect the ILP negatively. The dependen-
cies of the operations on each other force the compiler to
schedule a lot of NOPs (No OPerations) instead of useful
operations. A particular problem for a TriMedia program
is branches. The compiled code is organised in so-called
decision trees, and if there is not enough plain code be-
tween branches, a large part of the decision trees can con-
sist of NOPs only, introducing many “wasted” instructions.

B. Which Parts to Optimise?

Since libavcodec is a very large project, it is impossible
to optimise it completely in a limited time period. Some
parts to optimise have to be chosen.

The TriMedia simulator provides statistics about the
time consumption of the functions in FFmpeg. The TriMe-
dia profiler was used to obtain the most expensive func-
tions of libavcodec in terms of execution time. These
are the most computationally-intensive functions from the
codecs, for example the functions implementing the IDCT
(Inverse Discrete Cosine Transform) algorithm.

The experiments were performed with input media files
encoded by different codecs. The most computationally-
intensive functions common to the largest number of the
most important (such as MPEG2 and MPEG4) codecs
were chosen for optimisation. For example, the func-
tion idctSparseColPut is one of the most time-
consuming functions in the decoding process of MPEG2,
MPEG4 and MJpeg codecs. In MPEG2 decoding this
function takes 9.14% of the total number of execution cy-
cles. Several other functions implementing the IDCT al-
gorithm also consume a significant portion of the total ex-
ecution time.

C. Optimisation Methods

The TriMedia compiler provides a large variety of auto-
matic optimisations that can be applied. Unfortunately, the
compiler’s ability is restricted, and certain optimisations
have to be applied manually. The compiler can schedule
plain code without branches and dependencies most effi-
ciently. One of the main goals of manual code optimi-
sation is, therefore, to eliminate branches and dependen-

cies as much as possible. Below an example is given of
how branches can be eliminated in several functions of the
IDCT algorithm, and a technique to avoid false dependen-
cies (restricted pointers) is described.

The TriMedia issues 5 operations every clock cycle.
These operations can be elementary, RISC-like, as well as
custom operations. The TriMedia custom operations are
similar to MMX operations. They process several small
data type packed in a single 32-bit register in parallel. An
example of such a custom operation performing several
arithmetic operations isifir16 which is a sum of products
of signed 16-bit halfwords (see Figure1):

ifir16(a,b)= ahigh × bhigh + alow × blow

whereahigh (bhigh) andalow (blow) are high and low 16-bit
signed half-words of the 32-bit operandsa andb. The la-
tency of theifir16 operation is three clock cycles, the same
as that of theimul operation (32-bit integer multiplication).

Fig. 1
ifir16 TRIMEDIA CUSTOM OPERATION

The custom operations are specialised for multimedia
algorithms and are implemented in hardware, providing
a large performance improvement. The current TriMedia
compiler is not able to compile to custom operations, so a
programmer has to insert them manually.

Below is an example of optimisations based on cus-
tom operations applied in libavcodec. It is taken from the
function idctSparseColPut , one of the most time-
consuming functions in DVD (MPEG2), DivX (MPEG4),
and MJpeg decoding:

a0 += W2 * col[8*2];
if (col[8*4])

a0 += W4 * col[8*4];
if (col[8*6])

a0 += W6 * col[8*6];

This code has been replaced by:

temp = IFIR16(PACK16LSB(W2,W4),
PACK16LSB(col[8*2],
col[8*4]));

a0 += IFIR16(PACK16LSB(temp,W6),
PACK16LSB(1,col[8*6]));

The ifir16 andpack16lsbTriMedia custom operations are
used here. Thepack16lsboperation packs the two least
significant half-words of its input operands into its desti-
nation (32-bit) operand.

IFIR16(PACK16LSB(W2,W4),
PACK16LSB(col[8*2],col[8*4]))

is equivalent to

W2 * col[8*2] + W4 * col[8*4]

Thus, instead of 2 integer multiplications (which take
2 × 3 = 6 clock cycles) and one addition (1 clock cy-
cle) everything is done by 2 packing operations (2×1 = 2
clock cycles) and oneifir16 operation (3 clock cycles).

In the original code given above, the expensive mul-
tiplication operation is avoided if one operand is zero.
This technique assumes that the multiplication operation
is much more expensive than a comparison and/or con-
ditional branch. For the TriMedia, this technique is not
applicable, because the branches can result in a very bad
schedule causing a lot of wasted clock cycles. Instead, the
branches were eliminated completely without affecting the
semantics, by adding something multiplied by zero.

This optimisation was applied to several functions in the
IDCT algorithm, for several variables. As a result, the exe-
cution time of the function calling them decreased by 17%.

Restricted pointers help to avoid false dependencies, al-
lowing the compiler to make assumptions that are not safe
in the general case. Consider the following example:

int func(char *a, char *b, char *c)
{

c[0] = a[0] * b[0];
c[1] = a[0] * b[1];

}

In the general case the pointers can refer to the same or
overlapping memory locations. For example,c can be
equal toa. If so, the second assignment statement can be
data dependent on the first one, sincec[0] equalsa[0]. It
means that the operations of the two statements cannot be
executed in parallel, scheduled in the same VLIW instruc-
tion. To make sure that the pointers are not aliased to each
other, the compiler must perform an inter-procedural anal-
ysis of the whole application. However, if the programmer
is sure that the pointers refer to distinct arrays and do not
alias, he can inform the compiler by declaring the pointers
as restricted, by using the keywordrestrict after the type
specification.

Before optimisations After optimisations Performance

File ID
Cycles
(×103)

Frequency
required (MHz)

Cycles
(×103)

Frequency
required (MHz)

improvement
(%)

01 5046 504.6 3077 307.75 39
02 6419 641.92 3752 375.15 42
03 6347 634.73 3676 367.57 42
04 6784 678.45 4007 400.74 41
05 5587 279.37 3912 195.62 30
06 2992 299.16 2079 207.87 31
07 3192 319.25 2220 222.01 30
08 3498 349.79 2372 237.22 32
09 2347 234.67 1680 168.02 28
10 3518 351.77 2425 242.54 31

Average: 34.6

TABLE I
PERFORMANCE BEFORE AND AFTER OPTIMISATION

Except the TriMedia-specific optimisations described
above, algebraic simplifications, loop unrolling and func-
tion inlining have been applied to libavcodec. Function
inlining gives considerable advantages: the call and re-
turn operations are eliminated, the code becomes less frag-
mented (plain) giving more possibilities for the scheduler
to do a good job, and it reduces the number of decision
trees since each function invocation adds a decision tree.
However function inlining and loop unrolling should be
used carefully when optimising for the TriMedia. They
increase the number of instructions, which may affect the
instruction cache, and increase the number of memory stall
cycles.

D. Experimental Results

The performance is measured in terms of the number of
clock cycles needed on the TriMedia to perform a task. We
focus on the task of decoding video and audio streams in a
file. Several video files with different properties are used.
First a video file is processed using the “original” libav-
codec, that is libavcodec as it was right after porting was
finished, but before applying manual optimisations. Then
the same video file is processed on libavcodec as it is after
the optimisations. Only manual optimisations are consid-
ered. The difference in speed is called theperformance
improvement. If a video file processing is finished inN
clock cycles on unoptimised libavcodec and inM cycles
on the optimised one, the performance improvement (in
%) is calculated as follows:

performance improvement(%) = (1−M/N)× 100

Fig. 2
PERFORMANCE BEFORE AND AFTER OPTIMISATION

The value defines how much faster the optimised libav-
codec processes a file than the unoptimised one. To ob-
tain the number of clock cycles needed for performing a
task, it is simulated with thetm2270simTriMedia sim-
ulator. The simulator is given a parameter defining the
memory of 128 MB. For benchmarking FFmpeg performs
decoding of video and audio streams in 4 MPEG2 and
6 MPEG4 files and stores them in raw video (yuv420p,
resolution160 × 128, 25.00 fps) and audio (WAVE) for-
mat. Each MPEG2 file has MPEG Audio Layer 2 audio
stream, the video stream of the resolution720 × 480 or
720× 576, and the frame rate 30 frames per second (fps).
Each MPEG4 file has MPEG Audio Layer 3 audio stream,
the video stream of the resolution640×480, and the frame
rate 25 fps. The run time includes the I/O overhead.

In Table I the execution time (in clock cycles) needed
by libavcodec to decode the video files is given, together

with the processor clock frequency required to perform the
task in real time. The table shows the results before and
after applying the manual optimisations to libavcodec. The
performance improvement is visualised in Figure2. On
average, the MPEG2 decoder became approximately41%
faster and MPEG430% faster.

One of the most effective automatic optimisations ap-
plied was function inlining. When the inline level was set
to default, the TriMedia compiler ignored theinline key-
word in the declarations of many small functions. It was
obvious from the profiling results, they included the func-
tions that were supposed to be inlined (these functions did
not have to appear in the function list after the compila-
tion). The inline level has been set to the maximum, and
after that FFmpeg performed 17.2% faster in average.

Another considerable contribution to the performance
improvement (7.5% for MPEG2 and 3% for MPEG4 de-
coding) was given by the set of optimisations applied to
the unoptimised C version of the IDCT algorithm. These
optimisations mainly involved the use of SIMD TriMedia
custom operations to increase the instruction level paral-
lelism, branch elimination, and the use of restricted point-
ers. An example of the optimisations applied to the func-
tions implementing the IDCT algorithm is given in Section
III-C.

A tendency was noticed that usually an optimisation
gives more performance improvement if it is applied to-
gether with some other optimisations. In other words, if
an optimisationA gives a% and an optimisationB pro-
vides b% performance improvement of the unoptimised
code, than applying both optimisationsA and B gives a
(possible) performance improvement which is more than
(a + b)%. This could be explained by a better scheduling
achieved because of the two optimisations.

The MPEG4 decoder is less affected by the optimisa-
tions applied to the IDCT algorithm than MPEG2. The
average execution time decrease after applying the opti-
misations to the IDCT algorithm is 7.5% for MPEG2 and
3% for MPEG4 decoder. This affects the results of all the
applied optimisations: the MPEG2 decoder became on av-
erage 41%, and MPEG4 – 30.3% faster.

E. Automatic Transformation of MMX to TriMedia Code

In order to make porting of MMX-optimised software
to the TriMedia fast and easy, Philips is developing a tool
that automatically translates MMX macros to TriMedia-
compilable code. The MMX-to-TriMedia tool is a set of C
header files defining the MMX macros. A macro converts
one MMX instruction to one or more TriMedia instruc-
tions and/or custom operation(s) trying to cause the least
possible overhead in the execution time. Since in software

the MMX code is often integrated into inline assembly
code written for the x86 architecture, Philips is developing
another tool that converts inline assembly in Intel’s syntax
to macros. This tool produces regular assembly macros as
well as MMX macros, so the MMX-to-TriMedia tool also
supports some basic x86 assembly instructions.

Libavcodec contains, among others, MMX optimisa-
tions. Most of the MMX code is in the form of GNU in-
line assembly. To employ the MMX-to-TriMedia tool for
libavcodec, the GNU inline assembly syntax first had to be
converted to Intel inline assembly and then to C code with
MMX macros. First, the code is compiled on Windows
using MSYS and MinGW1. After that the Windows exe-
cutable file is disassembled with the commandobjdump -d
-mi386:intel which produces Intel assembly code. Then
the functions in libavcodec with GNU inline assembly are
replaced with the corresponding disassembled code. When
changing the GNU inline assembly code to the disassem-
bled Intel’s code, care must be taken of jumps, global and
local variables. The absolute addresses should be changed
to labels, constructs of the form[ebp-X] must be substi-
tuted by the names of the function’s arguments, and con-
structs of the form[ebp+X] should be changed to the
names of local (automatic) variables or eliminated. Cur-
rently these changes can only be made manually. When
the sources with the Intel inline assembly are ready, they
are processed with the tool that converts each instruction
in the assembly code into a macro. Finally the code with
macros can be compiled using the MMX-to-TriMedia tool.

Converting MMX code to TriMedia code did not suc-
ceed. At first, only the functions of the IDCT algorithm
were compiled using the MMX-to-TriMedia tool to check
the functionality and to compare the performance improve-
ment obtained with that achieved by manual optimisation.
The speedup given by the tool was comparable and some-
times even larger than that achieved by manual optimisa-
tion, but the output video stream was damaged. It is likely
that the problem appeared while transforming the GNU in-
line assembly to macros. But since the MMX to TriMedia
tool is in the development stage and has not been thor-
oughly tested, the problem can also be improper function-
ality of this tool. Discovering the reason(s) for the mal-
function would take too much time, so further work with
the MMX-to-TriMedia tool was cancelled.

The MMX-to-TriMedia tool introduces a certain over-
head because there is no one-to-one match of MMX in-
structions to those of the TriMedia. Some MMX instruc-
tions have to be expanded into non-optimal sequences of
TriMedia instructions. In other words, in theory a manu-

1MSYS and MinGW [1] provide a Linux environment with GNU tool
sets allowing compilation of some Linux software on Windows.

ally optimised code must perform better than MMX code
compiled with the tool. But in the case of libavcodec the
IDCT algorithm implemented in C differs from that imple-
mented using MMX. Hence, it is not correct to compare
the performance improvement achieved by the conversion
tool to that given by the manual optimisation.

If the problem in the IDCT code can be fixed without
affecting the execution time, the MMX-to-TriMedia tool
provides a good opportunity to improve the execution time
of applications that have already been optimised for MMX.

Unfortunately, the process of transforming from GNU
to Intel inline assembly took much more time and effort
than expected. It appeared to be very time-consuming and
error-prone and we question if it is better than to apply
some manual optimisations spending the same amount of
time.

In our opinion, the MMX-to-TriMedia tool is very use-
ful for quick optimisation for the TriMedia, if MMX-
optimised code in the form of macros or Intel inline as-
sembly is available. If the conversion tool also supports
GNU inline assembly, it will solve the problem of GNU to
Intel inline assembly conversion.

IV. PARALLELISATION OF L IBAVCODEC FORWASABI

The Wasabi chip contains several CPUs. Although the
final design has not been decided, it is anticipated that
most processors will be TriMedias. To exploit the com-
putational power of multiple TriMedias, libavcodec must
be parallelised to distribute the workload among several
processors.

In the original libavcodec the video encoding process is
parallelised using data parallelism. Each thread executes
the same code but on a different piece of data (for exam-
ple, different areas of a video frame). It is implemented
using the POSIX Pthreads [8] and Windows threads [4]
interfaces. However, Wasabi supports the TriMedia Op-
erating System Abstraction Layer (TM OSAL [17]) API.
Therefore, a new interface for TM OSAL was created. The
Win32 threads interface was chosen as a base for it.

The creation of TM OSAL interface involved a change
of library function calls in the Windows interface by equiv-
alent calls for TM OSAL and some more changes when an
equivalent function could not be found. A new semaphore
was created to signalise that a task has finished its work.

Below the experimental results are presented. They con-
sisted of encoding video and audio from raw format. Video
is encoded in MPEG4 and audio – in MPEG Audio Layer
2 format. The sample is 5 seconds long, the resolution is
720× 480, and the frame rate is 29.97 frames per second.
The bitrate is 2000 kbit/s.

The experiments show that the highest speedup is

Fig. 3
SPEEDUP AS A FUNCTION OF THE NUMBER OFCPUS.

achieved when the number of threads created by FFmpeg
is equal to the number of CPUs (TriMedias) in Wasabi.
Hence below the number of CPUs determine the number
of threads.

TableII shows the execution time for different numbers
of processors. Figure3 depicts the speedup as a function
of the number of CPUs. It can be seen that the speedup is
almost linear for up to 6 processors. After that it slightly
levels off. But the scalability is not very impressive: on 2
CPUs the speedup is 1.8, on 4 CPUs it is 3.1, and finally
on 8 CPUs it is only 5.1.

Number of CPUs
Number of cycles

(millions)
Frequency needed for
real-time processing

1 21 626 4.3 GHz
2 12 005 2.4 GHz
4 6 906 1.4 GHz
6 4 933 987 MHz
8 4 203 841 MHz

TABLE II
NUMBER OF CYCLES AND FREQUENCY REQUIRED TO

ENCODE VIDEO AND AUDIO FOR DIFFERENT NUMBERS OF

PROCESSORS.

To explain this behaviour, Figure4 depicts the thread
activity during the encoding of one video frame. The
rows represent the tasks (threads), the horizontal bars show
when a processor was performing the task. A bar’s colour
indicates which CPU was executing the corresponding
task. The top row represents the main threadROOT, the
next seven rows named asIDLn (wheren is a number) are
“idle” threads meaning that the processors were idle, and
the following eight rows represent the tasks (threads) cre-
ated by libavcodec. The figure shows thread activity while
encoding a single video frame only, but the behaviour of
the entire application is similar, except for the starting

Fig. 4
THREAD ACTIVITY DURING THE ENCODING OF ONE VIDEO

FRAME ON 8 PROCESSORS(THE IMAGE IS PROVIDED BY THE

WASABI PERFORMANCE ANALYSIS TOOLTIMEDOCTOR).

point where the main thread performs some extra work
(reading the input file etc.).

Figure4 clearly shows that there are two steps in the en-
coding of a single frame that have been parallelised, i.e.,
the encoding algorithm is divided into two computation-
ally intensive parts that have been parallelised. The first
part is the motion estimation algorithm for the P- and B-
frames and the algorithm determining the spatial complex-
ity for the frame rate control for I-frames. The second part
performs the actual encoding. Between these two parts
the application (the main thread) merges the contexts af-
ter the first part and performs some other work, including
preparing the MPEG4 picture header. This work is not par-
allelised and this is the reason why there is a gap between
the two parallelised parts. In this gap only the main thread
is performing useful work on a single CPU. The other pro-
cessors are idle. This is also the main reason for the lack
of scalability. In addition, the work is slightly unbalanced:
some threads finish earlier than others. The second par-
allelised part is performing quite well. Some CPUs finish
their work earlier than others and stay idle, but not for very
long.

Between the frames the main thread needs some time
(very little compared to that inside a frame) to process one
or more audio frames and switch to the next video frame.

V. L IBAVCODEC INTERFACE

The Wasabi chip will contain several TriMedias and one
or more general purpose processors (GPPs). If the TriMe-
dias run libavcodec and the GPP(s) with Linux applica-
tion(s) using it (as depicted in Figure5), it gives a wide

Fig. 5
MAPPING OF TASKS ON PROCESSORS INWASABI CHIP

range of possibilities to speed up the system.
The idea of this part of the project is to develop a mech-

anism to communicate between applications running on
Linux (on GPPs) and libavcodec on TriMedia(s). It must
support multitasking, i.e., each GPP should be able to run
several applications using libavcodec simultaneously. The
user applications utilising libavcodec should be kept un-
changed, it is certainly not desirable to require an appli-
cation to deal with the interface. For an application, libav-
codec is a dynamically loaded library, and it should remain
the same.

A. System Structure

Since the interface provided to user applications should
not be changed, a library called libavcodec on GPP with
Linux can be made that is in fact a “wrapper” providing
interface to TriMedia processors as shown in Figure6.

Fig. 6
L IBRARIES - “ WRAPPERS”

This “wrapper” library must provide a set of libavcodec
application programming interface (API) functions. When
a function is called by an application, the “wrapper” li-
brary on the GPP side must pass the function name and its

parameters to the “wrapper” on the TriMedia side, which
calls that function in the real libavcodec library. The result
is passed by the “wrapper” on the TriMedia side to that on
the GPP side, and the latter returns it to the application.

The Wasabi chip will support interrupts. Remote proce-
dure calls can be implemented using them. The GPP-side
“wrapper” raises interrupt when a function call happens,
the TriMedia-side “wrapper” does it when a function re-
turns. When an interrupt is sent, a special data structure in
the shared memory is filled by the sender for the receiver.

The structure of the data passed from GPP-side “wrap-
per” to that on the TriMedia side depends on several sys-
tem properties. If the “wrappers” on both sides can address
memory in the same way (share the Linux page tables),
than the communication data structure is very simple since
it does not have to transfer the data pointed by the func-
tions’ arguments. If the data must be transfered, than the
communication data structure depends on the communica-
tion buffer size. If there is a small communication buffer
which cannot hold all the data pointed by the arguments,
all the data must be transfered through a FIFO. The com-
munication data structure should contain in any case the
function name, arguments of the integral type, identifier of
the calling process (if the system is multitasking), and syn-
chronisation fields. If the virtual address space is shared
between the GPP and TriMedia, the function arguments of
the pointer type can be passed as they are. Otherwise the
data must be transfered in one or more data buffers. The
sender writes the data into the first, then into the second
buffer, etc. When all the buffers are filled in, the sender
rewrites the buffers in the same order, first checking if the
receiver has read the buffer it is going to write into. Split-
ting the data into several buffers is used to speed up the
data transfer: while the sender is writing the second buffer,
the receiver can read the first one etc. If there is only one
large buffer, the receiver has to wait while the sender writes
it completely before reading it.

In the case if all the data must be transferred from GPP
to the TriMedia, the “wrappers” are responsible for man-
aging all the pointers, which is a very complicated task. It
must convert the Linux virtual addresses into physical ad-
dresses understandable for the TriMedia side and convert
them back when receiving data from the TriMedia. These
addresses can be not only the pointers among a function’s
arguments, but also in the data structures pointed to by
them. Some structures contain function pointers that can
be invoked from libavcodec, and than the wrappers must
be able to organise it. Fortunately, all the function point-
ers needed seen so far have default implementations inside
libavcodec and thus this problem can be avoided by pass-
ing NULL instead of them (but than the application must

be changed if it uses these function pointers).
A solution to these complications is that both the “wrap-

per” sides work in the same address space, and only point-
ers are passed from GPP to TriMedia. This is possible only
if both the GPP and TriMedia sides run Linux which works
with the same (shared) page tables.

B. Memory Allocation

If the TriMedia side does not run Linux which is not
currently the case, special care must be taken when trans-
ferring data from the GPP to TriMedia side. There is one
major problem with memory allocation for data transfer:
on the GPP-side, the “wrapper” operates on a Linux sys-
tem. Usually applications running on Linux do not have
to bother with physical memory since Linux provides a
sophisticated memory management mechanism which al-
lows any application to have its own large linear virtual
memory space. However, the “wrapper” on the GPP can-
not pass a virtual address to the “wrapper” on the TriMe-
dia, since it is meaningless for the latter: to translate a
virtual address to a physical one, it has to access the Linux
page tables. The “wrapper” on the GPP-side must provide
physical addresses, and if the buffer it allocates is larger
than one page, it must occupy contiguous pages in physi-
cal memory, which is usually not the case when the space
is allocated in Linux withmallocsince the memory is frag-
mented. In addition, Linux should not swap the allocated
page(s).

B.1 “Wrapper” Structure on the GPP Side

The GPP-side “wrapper” needs to work with kernel
functions that are available only for kernel modules. The
proposed structure is shown in Figure7:

Fig. 7
GPP-SIDE “ WRAPPER” STRUCTURE

The Linux kernel module is loaded withinsmodcom-
mand (see [13] and [14]). It allocates the buffer of the
required size withkmalloc(can allocate up to 128 KByte)
or get free pages(can allocate maximum around 2 MB on
most systems with Linux 2.0 and later) function (see [12]).
The GPP-side “wrapper” libavcodec library calls the inter-
face functionget wrapperbuffer addr (it must be checked
that the name does not contradict with other global Linux
kernel symbols). The module returns the virtual address

of the buffer that can be used by the library to transfer the
data.

As the system works, the memory becomes more and
more fragmented; it is possible that there is no contigu-
ous space in memory of the size the module requests and
Linux cannot solve this problem by swapping/rearranging
the allocated pages. In this case the module will fail to al-
locate memory. To avoid this situation, the memory must
be allocated as early as possible after the system boot.

If media processing with libavcodec is one of the major
tasks of the system, the different technique for memory al-
location is advised. To get a large buffer of physically con-
tiguous memory, we can allocate it by requesting memory
at boot time. Allocation at boot time is the only way to
retrieve consecutive memory pages without the limits on
the size imposed byget free pages, both in terms of max-
imum allowed size and limited choice of sizes. To use this
technique, the module must be linked directly in the kernel
image; that is, the kernel must be rebuilt with it. With the
kernel 2.3.23 and later, the functionsalloc bootmempages
and others can be used. The way appropriate also for older
kernels is reserving the top of RAM by passing themem=
argument to the kernel at boot time, reserving a part of
memory from kernel’s usage. The memory allocated in
this way can never be freed until the system reboot (see
[12], chapter 7 and 13 for details).

VI. CONCLUSIONS

The process of porting libavcodec to the TriMedia took
(too) much time. Many other open-source applications,
which may also be ported to the TriMedia, are also written
for the latest GNU compiler and would have the same port-
ing problems. These problems can be solved by extending
the GNU compiler with a back-end for the TriMedia. This
solution is better than extending the front-end of the Tri-
Media compiler to support the new features of the GNU
compiler because it requires less effort. The back-end of
the GNU compiler has to be extended only once. After
that, new extensions of the front-end of the GNU compiler
will not require additional effort on the back-end for the
TriMedia. On the contrary, if the approach to extend the
front-end of the TriMedia compiler to support the syntax of
the GNU compiler is taken, it should be updated every time
the GNU compiler’s front-end is enhanced with new fea-
tures. This becomes more and more expensive in time. An-
other approach is to create a “C-to-C” compiler which will
produce code supported by the TriMedia compiler from
the code for the GNU compiler. This solution has the same
drawback as extending the front-end of the TriMedia com-
piler: the “C-to-C” compiler must be updated every time
the GNU compiler is extended. Besides that, a “C-to-C”

compiler will produce a more or less unreadable C code for
the TriMedia compiler. If Philips wants to incorporate the
TriMedia extension into an open-source project, i.e. sub-
mit the TriMedia extension to the project maintainers and
propose to include them in the project, an unreadable code
can prevent the project maintainers from accepting it. This
conclusion is based on the requirements for the code style
that are posed by the maintainers of libavcodec for those
who want to submit some extensions.

The manual optimisations applied demonstrate consid-
erably good results. When the time constraints permit, it
is always advisable to apply manual optimisations to the
most time-consuming parts of applications.

Libavcodec supports many optimisations. As many
other multimedia applications (for example the XviD
codec), libavcodec supports MMX optimisations. The au-
tomatic MMX-to-TriMedia conversion tool described in
SectionIII-E tries to exploit the existing MMX optimisa-
tions for a fast and easy optimisation for the TriMedia. The
results of this work show that this approach is not fast and
easy with the current MMX-to-TriMedia tool in case the
MMX optimisations are in the form of GNU inline assem-
bly. The reason is that the MMX-to-TriMedia tool expects
the instructions in the form of macros which can be ob-
tained with another tool, but the latter accepts only the In-
tel inline assembly syntax. Manual code transformation
from GNU to Intel inline assembly syntax is very time-
consuming and error-prone. This problem can be solved
by extending the inline assembly to macros conversion tool
with GNU inline assembly support. Furthermore, these
tools can be incorporated into the TriMedia compiler to
make the conversion process transparent to the user.

The parallelisation process performed in this work
proved that Wasabi is well prepared for a quick paralleli-
sation of applications that already have been parallelised.
With the advantages of hyperthreaded processors and chip
multiprocessors, it is expected that more and more open
source applications such as libavcodec will support mul-
tithreading. The only way to improve this feature of
Wasabi even further is to extend its libraries with sup-
port for POSIX Pthreads, because parallelised open-source
applications for Linux will most probably utilise POSIX
Pthreads.

The interface suggested in this work is considerably
complex. The primary reason of the complexity is that
the application runs in the Linux domain and libavcodec
works in the TriMedia domain which uses another, less so-
phisticated operating system. Because the Memory Man-
agement Unit (MMU) creates the virtual memory address
space and the memory segmentation on Linux, the inter-
face must copy all data from the Linux virtual address

space to contiguous buffers in the physical memory. This
copying has a large negative effect on the performance.
Furthermore, it complicates the interface significantly be-
cause of nested pointers in the data structures that should
be copied. The only solution to these problems is to run
Linux on the TriMedias.

VII. F UTURE WORK

As future work on optimisation of libavcodec for
Wasabi, further TriMedia-style optimisations are highly
recommended. The optimisations targeted at the increase
of the instruction level parallelism are expected to sig-
nificantly improve the performance of the tasks running
on the TriMedia processors, because currently most parts
of libavcodec do not employ the features offered by the
VLIW architecture and a large amount of a useless code
(NOPs) is executed.

The scalability of libavcodec’s video encoder execution
time when the number of CPUs is increased can be im-
proved by parallelising the work that is performed by the
main thread while the other tasks are idle. Another ap-
proach is to improve this work using the TriMedia-style
optimisations so that its effect is less important. Further-
more, the video and audio decoders and audio encoder can
be parallelised. The potential of this parallelisation should
first be investigated, if it makes sense in terms of the in-
troduced synchronisation and communication overhead in
the system.

Finally, the interface between the general-purpose pro-
cessor and the TriMedia can be designed in a greater detail
and implemented.

REFERENCES

[1] MinGW - Home, http://www.mingw.org/ .
[2] MPEG Pointers and Resources, http://mpeg.org .
[3] The FFmpeg project, http://ffmpeg.sourceforge.

net/ .
[4] Windows threads, http://msdn.microsoft.com/

library/default.asp?url=/library/en-us/
dllproc/base/multiple_threads.asp .

[5] Inc. Advanced Micro Devices,3DNow! Technology Manual,
(2000), Available at http://www.amd.com/us-en/
assets/content_type/white_papers_and_tech_
docs/21928.pdf .

[6] Bill Homer, Restricted Pointers, (1995), WG14/N448, X3J11/95-
049. Available atftp://ftp.dmk.com/DMK/sc22wg14/
c9x/aliasing/ .

[7] Ze-Nian Li and Mark S. Drew,Fundamentals of Multimedia, Oct
2003.

[8] Andrae Muys,POSIX Pthreads Tutorial, http://www.cs.
nmsu.edu/˜jcook/Tools/pthreads/pthreads.
html .

[9] Alex Peleg, Sam Wilkie, and Uri Weiser,Intel MMX for Multime-
dia PCs, Communications of the ACM40 (1997), no. 1, 24–38.

[10] Philips,TM1100 Preliminary Data Book, March 1999.

[11] , TriMedia Compilation System 4.5 - User Manuals, vol.
3 - Compilation Tools, Sept 2004.

[12] Alessandro Rubini and Jonathan Corbet,Linux Device Drivers,
second ed., June 2001, Available athttp://www.xml.com/
ldd/chapter/book/ .

[13] Peter Jay Salzman, Michael Burian, and Ori Pomerantz,The
Linux Kernel Module Programming Guide, 2.6.1 ed., Sept
2005, Available athttp://tldp.org/LDP/lkmpg/2.6/
html/ .

[14] , The Linux Kernel Module Programming Guide, 2.4.0
ed., Sept 2005, Available athttp://tldp.org/LDP/
lkmpg/2.4/html/ .

[15] Paul Stravers and Jan Hoogerbrugge,Homogeneous Multipro-
cessing and the Future of Silicon Design Paradigms, Proc. of In-
ternational Symposium on VLSI Technology, Systems, and Ap-
plications (VLSI-TSA), Apr 2001.

[16] Jos van Eijndhoven, Jan Hoogerbrugge, M.N. Jayram, Paul
Stravers, and Andrei Terechko,Cache-coherent heterogeneous
multiprocessing as basis for streaming applications, vol. 3,
pp. 61–80, 2005.

[17] Arjan van Lankveld,User Documentation – OSAL, Philips Semi-
conductors RTG/PID/2003/0086 (2003).

[18] John Watkinson,The MPEG Handbook. MPEG-1, MPEG-2,
MPEG-4, second ed., Nov 2004.

http://www.mingw.org/
http://mpeg.org
http://ffmpeg.sourceforge.net/
http://ffmpeg.sourceforge.net/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/multiple_threads.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/multiple_threads.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/multiple_threads.asp
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/21928.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/21928.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/21928.pdf
ftp://ftp.dmk.com/DMK/sc22wg14/c9x/aliasing/
ftp://ftp.dmk.com/DMK/sc22wg14/c9x/aliasing/
http://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthreads.html
http://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthreads.html
http://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthreads.html
http://www.xml.com/ldd/chapter/book/
http://www.xml.com/ldd/chapter/book/
http://tldp.org/LDP/lkmpg/2.6/html/
http://tldp.org/LDP/lkmpg/2.6/html/
http://tldp.org/LDP/lkmpg/2.4/html/
http://tldp.org/LDP/lkmpg/2.4/html/

	Introduction
	Porting FFmpeg to the TriMedia
	The C Language Changes Applied to FFmpeg
	Unsupported Library Functions and Type Declarations
	Operating System Specific Features
	Other Porting Issues

	Optimisation of Libavcodec for the TriMedia
	Introduction
	Which Parts to Optimise?
	Optimisation Methods
	Experimental Results
	Automatic Transformation of MMX to TriMedia Code

	Parallelisation of Libavcodec for Wasabi
	Libavcodec Interface
	System Structure
	Memory Allocation
	``Wrapper'' Structure on the GPP Side

	Conclusions
	Future Work

