Optimisation of Multimedia Applications for the
Philips Wasabi Multiprocessor System

Demid Borodiri, Andrei Terechkt®, Ben Juurlink, and Paulus Stravets

*Computer Engineering Laboratory “*Philips Research Laboratory
Faculty of EEMCS, TU Delft Prof. Holstlaan 4
Mekelweg 4, 2628 CD Delft 5656 AA Eindhoven

The Netherlands The Netherlands

E-mail: D.Borodin@EWI.TUDelft.NL
Phone: +31 (0)6 41861436, Fax: +31 (0)15 2784898

Abstract—Libavcodec is an open source software library ~ Libavcodec is an open source software library within
that contains many different audio/video codecs. In this the FFmpeg project3]. It contains many different au-
work, it is optimised and parallelised for the Philips Wasabi dio/video coders/decoders (codecs) and is known to be a
chip multiprocessor, which is currently being developed at very fast MPEG4 codeclB], [7], [2]. It has been opti-
Philips. Wasabi contains several DSPs and one or more _ . . L . i . ,

mised for several multimedia extensions including Intel’'s

general-purpose processors. The TriMedia-style optimisa- , o
tions (in particular utilising the SIMD custom operations) MMX [9], AMD’s 3DNow [3], and others. \Wasabi is an

improve the performance of the MPEG2 and MPEG4 de- instance of the CAKE architectur&g], [16], a chip multi-
coders by approximately 41% and 30%, respectively. Paral- processor targeted at media applications which is currently
lelisation of the video encoder achieves a linear speedup for being developed at Philips Research. It consists of several
up to 6 CPUs. Thereafter, it slightly levels off. Additional TriMedia [10] processors and one or more general-purpose
work is required to make libavcodec more scalable so that it processors which communicate via a shared level-2 cache.
can exploit more processors efficiently. In addition, an inter- The TriMedia is a processor with a very long instruction

face between the TriMedia(s) executing libavcodec and the . .
general-purpose processors running host applications that word (VLIW) architecture that supports many media oper-

use libavcodec is proposed. This interface enables applica- 8tiONS. _ _
tions to efficiently use libavcodec running on the TriMedias, ~ The goals of this work are (1) to port libavcodec to the
without having to port the applications themselves to the Tri- TriMedia, (2) to improve performance by applying archi-

Media. tecture specific optimisations, (3) to parallelise libavcodec
Keywords— libavcodec; TriMedia; multiprocessor; opti- to exploit multiple processors, and (4) to provide an inter-
misation; VLIW architecture face between the TriMedia processor(s) executing libav-

codec and the general-purpose processor(s) running appli-
cation(s) that use libavcodec.

This paper is organised as follows.

The demand for computational power increases continu-In Sectionll we describe the difficulties encountered
ously in the field of digital multimedia. The power of ded-when porting FFmpeg to the TriMedia. FFmpeg exploits
icated multimedia processors working alone has becom@any features of the most recent GNU C compiler (gcc),
insufficient. Currently Philips considers utilising paralwhereas the TriMedia compiler accepts standard ANSI C.
lel multiprocessor architectures for multimedia processingflence certain C constructs had to be replaced by others
The advantages of dedicated multimedia processors coamd certain library functions had to be implemented.
bined with parallelisation should open new possibilities for Sectionlll describes how libavcodec was optimised for
computationally intensive multimedia tasks. In additionthe TriMedia. Among the optimisations that have been ap-
Philips considers using open source software quickly optiied are conventional optimisations such as algebraic sim-
mised for the multimedia processors. plifications, techniques to increase instruction-level par-

I. INTRODUCTION

mailto:D.Borodin@EWI.TUDelft.NL?Subject=By the link in "Optimisation of Multimedia Applications for the Philips Wasabi Multiprocessor System" paper

allelism such as branch elimination, and restricted point- typedef struct {
ers to inform the compiler that there is no aliasing. In char ch;
addition, we have used the custom operations to process int i;
several short data types simultaneously in a SIMD fash- float ,
ion. To measure performance a cycle-accurate simulator of b struct_type;
the TriMedia has been employed. For benchmarking seffie structure assignment

eral high-resolution MPEG2 and MPEG4 video sequences struct_type struct_name:
have been decoded. The optimisations improve the perfor- struct_name =
mance of the MPEG2 and MPEG4 decoders by approxi- (struct_type) { 'a’, 50, 0.5 };

mately 41% and 30%, respectively. must be replaced by
SectionlV describes the parallelisation of the video en-
coder which involved changing the interface from POSIX
pthreads to the TriMedia multi-threading APl TM OSAL.
An almost linear speedup for up to 6 processors is
achieved. Additional work is required to make libavcodec
more scalable so that it can exploit more processors efﬁi

struct_type struct_name;
struct_name.ch = ’a’;
struct_name.i 50;
struct_name.f 0.5;

Structure initialisation: for the same structure type as in
e previous example, the initialisation

ciently.
SectionV proposes an interface between libavcodec struct_type struct_name =
running on the TriMedia(s) and applications running on { =05, .i=50 }

GPP(s). This interface enables applications to efficientshould be replaced by

use Ilbavcodec' running on the TriMedias, vv_|thou_t having struct_type struct_name

to port the applications themselves to the TriMedia. {0, 50, 0.5 };
Finally, SectionVI draws conclusions of this work and

SectionVIl provides suggestions for future work.

Declaration of arrays with non-constant dimensions: a
declaration such as

[I. PORTING FFMPEG TO THETRIMEDIA int int_array[w;

According to [L1], the C programming language ac-where w is not a constant, should be replaced by a function
cepted by the TriMedia compilémccis based on the fol- call allocating memory dynamically:
lowing standards: int *int_array =
« American National Standard for Programming Languages— (int*) malloc(w * sizeof(int));

C, ANS X3'159__1989 Finally, the attributes of the GNU C compiler are not
« ISO/IEC 9899:1990 supported by the TriMedia compiler. They should be care-
« Technical Corrigendum 1 (1994) to ISO/IEC 9899:199ully eliminated. For example, the attribute

« IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE 754-1985

“ANS X3.159-1989" is the basis for the later ISO stancan be simply removed since it is only used to let the com-
dard “ISO/IEC 9899:1990,” which includes the prior stanpiler know that no warnings should be given if variables
dard entirely, with only minor editorial changes. Furthegre unused. Normally the compiler would give a warning
in the text, the 1ISO C is meant by “ANSI C” or “Standardabout an unused variable.
C".

There are also extensions to ANSI C in the TriMedi
compiler, such as the concept of restricted pointers, as pro-There are some C library type declarations used in the
posed by the Numerical C extensions group in the propodaFmpeg project that are not supported by the TriMedia

__attribute__ (unused)

;. Unsupported Library Functions and Type Declarations

X3J11/95-049, WG 14/N448]. Compilation System (TCS). To solve this problem, FFm-
_ peg was extended with some include files, sometimes with
A. The C Language Changes Applied to FFmpeg minor changes, taken from Linux standard include direc-

FFmpeg is written for the most recent GNU C compil{Ores.
ers. It utilises many features that are not supported by theBesides that, several functions used in FFmpeg are not
TriMedia compiler. Several examples are given below. Presentin TCS. FFmpeg was extended with the implemen-
Structure assignments: given a structure definition sug#tion of these functions. Due to the project time limita-
as tion, not all these functions were implemented completely.

Instead, simplified versions were implemented, based onTaking into account the VLIW architecture of the tar-
some assumptions. For example, the functienprintf get platform, the ideal case is when the processor is sat-
and vsnprintf simply call the standard functiorsprintf urated. That is, only the processor’'s computing resources
andvsprintf respectively, which are available in the TCSthe number and configuration of the available functional
standard library. The argument controlling the maximumanits) limit the performance of an application. The TriMe-
length of the produced string is ignored in both cases. Thisa VLIW processor allows to issue 5 operations in one in-

assumption turned out to be safe for FFmpeg. struction (clock cycle), and ideally the amount of instruc-
tion level parallelism (ILP) should be sufficient to execute
C. Operating System Specific Features 5 useful operations every clock cycle.

There are some operating system (primarily Linux) spe- Unfortunately in an unoptimised application there are
P gsy P y b many factors that affect the ILP negatively. The dependen-

cific features used in FFmpeg. The audio/video grabbing) :
) . es of the operations on each other force the compiler to
implementation uses them, for example. These featurés

were disreqarded. si) ichedule a lot of NOPs (No OPerations) instead of useful
garded, since they are out of scope of this work; . . . i
operations. A particular problem for a TriMedia program
is branches. The compiled code is organised in so-called
decision trees, and if there is not enough plain code be-
When porting FFmpeg to Philips TriMedia, the follow-tween branches, a large part of the decision trees can con-
ing aspects had to be also taken into account: sist of NOPs only, introducing many “wasted” instructions.
o The compiler had to be switched to Little Endian byte) o
ordering since the default is Big Endian and FFmpeg aB: Which Parts to Optimise?
sumes Little Endian. Since libavcodec is a very large project, it is impossible
o The TriMedia hardware does not support doubleto optimise it completely in a limited time period. Some
precision floating-point (64-bit) operations. As FFm-arts to optimise have to be chosen.
peg/libavcodec needs it, the compiler is switched to The TriMedia simulator provides statistics about the
double-precision floating-point simulation mode using théme consumption of the functions in FFmpeg. The TriMe-
-fp64 compiler command line option. Unfortunately, thisdia profiler was used to obtain the most expensive func-
has a negative effect on performance since the simulatiions of libavcodec in terms of execution time. These
is done in software. are the most computationally-intensive functions from the
« The first versions of the TriMedia do not support uneodecs, for example the functions implementing the IDCT
aligned load and store operations. As they are used (imverse Discrete Cosine Transform) algorithm.
libavcodec, the environment had to be changed to the Tri- The experiments were performed with input media files
Media 2270. Thatis, TCS 4.5 was used instead of TCS 4ehcoded by different codecs. The most computationally-
which did not support the TriMedia 2270 architecture. Thantensive functions common to the largest number of the
compiler command-line optioftarget tm2270Minimals most important (such as MPEG2 and MPEG4) codecs
used to set the target architecture. The employed simulaere chosen for optimisation. For example, the func-
tor istm2270simnstead otmsim tion idctSparseColPut is one of the most time-
After the porting is finished, FFmpeg runs on the&onsuming functions in the decoding process of MPEG2,
tm2270simsimulator. The default memory size assume/PEG4 and MJpeg codecs. In MPEG2 decoding this
by the simulator is 8 MB. This is not sufficient for the ex-function takes 9.14% of the total number of execution cy-
periments, so the simulator was explicitly instructed to agles. Several other functions implementing the IDCT al-
sume 128 MB of memory space. gorithm also consume a significant portion of the total ex-
ecution time.

D. Other Porting Issues

[1l. OPTIMISATION OF LIBAVCODEC FOR THE o
TRIMEDIA C. Optimisation Methods

The TriMedia compiler provides a large variety of auto-
matic optimisations that can be applied. Unfortunately, the

The measure to determine a program’s performancempiler’s ability is restricted, and certain optimisations
used in the work is the number of clock cycles requiretave to be applied manually. The compiler can schedule
to perform a task. The goal is to minimise the executioplain code without branches and dependencies most effi-
time of a program, i.e. to minimise the number of clockciently. One of the main goals of manual code optimi-
cycles as much as possible. sation is, therefore, to eliminate branches and dependen-

A. Introduction

cies as much as possible. Below an example is given of temp = IFIR16(PACK16LSB(W2,W4),
how branches can be eliminated in several functions of the PACK16LSB(col[8*2],
IDCT algorithm, and a technique to avoid false dependen- col[8*4]));
cies (restricted pointers) is described. a0 += IFIR16(PACKlGLSB(temp*WGZ' _
The TriMedia issues 5 operations every clock cycle. PACK16LSB(L col[g™e]));
These operations can be elementary, RISC-like, as well BBeifirl6 andpack16lsbTriMedia custom operations are
custom operations. The TriMedia custom operations aused here. Th@ackl6lsboperation packs the two least
similar to MMX operations. They process several smabllignificant half-words of its input operands into its desti-
data type packed in a single 32-bit register in parallel. Anation (32-bit) operand.
example of such a custom operation performing several IFIR16(PACK16LSB(W2,W4),
arithmetic operations igirl6 which is a sum of products PACK16LSB(col[8*2],col[8*4]))

of signed 16-bit halfwords (see Figuty is equivalent to

ifirl6(a,b) = Qhigh X bhigh + aiow X biow W2 * col[8*2] + W4 * col[8*4]

whereaign (bhigh) andae, (biow) are high and low 16-bit Thus, instead of 2 integer multiplications (which take
signed half-words of the 32-bit operandsndb. The la- 2 x 3 = 6 clock cycles) and one addition (1 clock cy-
tency of thefirl6 operation is three clock cycles, the samele) everything is done by 2 packing operatioRs(l = 2
as that of thémul operation (32-bit integer multiplication). clock cycles) and oniirl6 operation (3 clock cycles).
In the original code given above, the expensive mul-
tiplication operation is avoided if one operand is zero.
39 3w 45 Fw g 31 Pmpn q5 Bew g Thi hni hat th itiolicati :
[soned | soned | [somed | swned | This technique assumes that the multip |pat|on operation
T ‘ ! is much more expensive than a comparison and/or con-
: X ditional branch. For the TriMedia, this technique is not
_____________ applicable, because the branches can result in a very bad
schedule causing a lot of wasted clock cycles. Instead, the
32 - 0 branches were eliminated completely without affecting the
|fuII—preusmnBB—hn.S|gnecl
o | > semantics, by adding something multiplied by zero.
[signed, C”pp;d 1o [27-1-257 This optimisation was applied to several functions in the
IDCT algorithm, for several variables. As a result, the exe-

_ cution time of the function calling them decreased by 17%.
Fig. 1 Restricted pointers help to avoid false dependencies, al-
ifirl6 TRIMEDIA CUSTOM OPERATION lowing the compiler to make assumptions that are not safe
in the general case. Consider the following example:

@

int func(char *a, char *b, char *c)
The custom operations are specialised for multimedia {

algorithms and are implemented in hardware, providing c[0] = a[0] * b[O];

a large performance improvement. The current TriMedia c[1] = a[0] * b[1];

compiler is not able to compile to custom operations, so a }

programmer has to insert them manually. In the general case the pointers can refer to the same or

Below is an example of optimisations based on cugyerlapping memory locations. For examplecan be
tom operations applied in libavcodec. It is taken from th@qual toa. If S0, the second assignment statement can be

function idctSparseColPut , one of the most time- . :
consuming functions in DVD (MPEGZ2), DivX (MPEGA4), data dependent on the first one, sin{§ equalsa[0]. It

and MJpeg decoding: means th?.t the operations of th(_e two statements c_annot be
executed in parallel, scheduled in the same VLIW instruc-
a0 += W2 * col[8*2]; tion. To make sure that the pointers are not aliased to each

if (col[8*4])
a0 += W4 * col[8*4];
if (col[8*6])

other, the compiler must perform an inter-procedural anal-
ysis of the whole application. However, if the programmer

a0 += W6 * col[8*6]; is_sure that the pointers refer_to distinct arrays and qlo not
_ alias, he can inform the compiler by declaring the pointers
This code has been replaced by: as restricted, by using the keyworeistrict after the type

specification.

Before optimisations After optimisations Performance
File ID Cycles Frequency Cycles Frequency improvement
(x10%) required (MHz) | (x10%) required (MHz) (%)
01 5046 504.6 3077 307.75 39
02 6419 641.92 3752 375.15 42
03 6347 634.73 3676 367.57 42
04 6784 678.45 4007 400.74 41
05 5587 279.37 3912 195.62 30
06 2992 299.16 2079 207.87 31
07 3192 319.25 2220 222.01 30
08 3498 349.79 2372 237.22 32
09 2347 234.67 1680 168.02 28
10 3518 351.77 2425 242.54 31
Average: 34.6
TABLE |
PERFORMANCE BEFORE AND AFTER OPTIMISATION
Except the TriMedia-specific optimisations describe MPEG2 | MPEG4
above, algebraic simplifications, loop unrolling and func 7oooomooo 2%

tion inlining have been applied to libavcodec. Functiol &owowome]
inlining gives considerable advantages: the call and r sanneaenen
turn operations are eliminated, the code becomes less friz
mented (plain) giving more possibilities for the schedule” ...
to do a good job, and it reduces the number of decisic 55000000
trees since each function invocation adds a decision tre o e e e e e B i
However function inlining and loop unrolling should be mput fite 1D

used carefully when optimising for the TriMedia. They

increase the number of instructions, which may affect the Fig. 2

instruction cache, and increase the number of memory stall PerRFORMANCE BEFORE AND AFTER OPTIMISATION
cycles.

4000000000

@ Before
W After

3000000000

D. Experimental Results
P The value defines how much faster the optimised libav-

The performance is measured in terms of the number epdec processes a file than the unoptimised one. To ob-
clock cycles needed on the TriMedia to perform a task. \Wain the number of clock cycles needed for performing a
focus on the task of decoding video and audio streams iriask, it is simulated with thém2270simTriMedia sim-
file. Several video files with different properties are usedilator. The simulator is given a parameter defining the
First a video file is processed using the “original” libavinemory of 128 MB. For benchmarking FFmpeg performs
codec, that is libavcodec as it was right after porting wagecoding of video and audio streams in 4 MPEG2 and
finished, but before applying manual optimisations. Thed MPEG4 files and stores them in raw video (yuv420p,
the same video file is processed on libavcodec as it is aft@solution160 x 128, 25.00 fps) and audio (WAVE) for-
the optimisations. Only manual optimisations are considnat. Each MPEG2 file has MPEG Audio Layer 2 audio
ered. The difference in speed is called fherformance Stream, the video stream of the resolutitid x 480 or
improvement If a video file processing is finished iN 720 x 576, and the frame rate 30 frames per second (fps).
clock cycles on unoptimised libavcodec andlif cycles Each MPEGA4 file has MPEG Audio Layer 3 audio stream,
on the optimised one, the performance improvement (fhe video stream of the resoluti6n0 x 480, and the frame
%) is calculated as follows: rate 25 fps. The run time includes the I/O overhead.

In Tablel the execution time (in clock cycles) needed
per formance_improvement(%) = (1 — M/N) x 100 by libavcodec to decode the video files is given, together

with the processor clock frequency required to perform ththe MMX code is often integrated into inline assembly
task in real time. The table shows the results before amdde written for the x86 architecture, Philips is developing
after applying the manual optimisations to libavcodec. Thanother tool that converts inline assembly in Intel's syntax
performance improvement is visualised in Fig@reOn to macros. This tool produces regular assembly macros as
average, the MPEG2 decoder became approximadtiély well as MMX macros, so the MMX-to-TriMedia tool also
faster and MPEGA40% faster. supports some basic x86 assembly instructions.
One of the most effective automatic optimisations ap- Libavcodec contains, among others, MMX optimisa-
plied was function inlining. When the inline level was setions. Most of the MMX code is in the form of GNU in-
to default, the TriMedia compiler ignored tline key- line assembly. To employ the MMX-to-TriMedia tool for
word in the declarations of many small functions. It watibavcodec, the GNU inline assembly syntax first had to be
obvious from the profiling results, they included the funceonverted to Intel inline assembly and then to C code with
tions that were supposed to be inlined (these functions didMX macros. First, the code is compiled on Windows
not have to appear in the function list after the compilaising MSYS and MinGW. After that the Windows exe-
tion). The inline level has been set to the maximum, ancutable file is disassembled with the commaibgtdump -d
after that FFmpeg performed 17.2% faster in average. -mi386:intelwhich produces Intel assembly code. Then
Another considerable contribution to the performancthe functions in libavcodec with GNU inline assembly are
improvement (7.5% for MPEG2 and 3% for MPEG4 dereplaced with the corresponding disassembled code. When
coding) was given by the set of optimisations applied tohanging the GNU inline assembly code to the disassem-
the unoptimised C version of the IDCT algorithm. Theséled Intel's code, care must be taken of jumps, global and
optimisations mainly involved the use of SIMD TriMedialocal variables. The absolute addresses should be changed
custom operations to increase the instruction level pardb labels, constructs of the forfiebp-X] must be substi-
lelism, branch elimination, and the use of restricted pointuted by the names of the function’s arguments, and con-
ers. An example of the optimisations applied to the funcstructs of the formlebp+X] should be changed to the
tions implementing the IDCT algorithm is given in Sectiomames of local (automatic) variables or eliminated. Cur-
l-C. rently these changes can only be made manually. When
A tendency was noticed that usually an optimisatiothe sources with the Intel inline assembly are ready, they
gives more performance improvement if it is applied toare processed with the tool that converts each instruction
gether with some other optimisations. In other words, if the assembly code into a macro. Finally the code with
an optimisationA gives % and an optimisatioB pro- macros can be compiled using the MMX-to-TriMedia tool.
vides b% performance improvement of the unoptimised Converting MMX code to TriMedia code did not suc-
code, than applying both optimisatioAsand B gives a ceed. At first, only the functions of the IDCT algorithm
(possible) performance improvement which is more thanere compiled using the MMX-to-TriMedia tool to check
(a + b)%. This could be explained by a better schedulinghe functionality and to compare the performance improve-
achieved because of the two optimisations. ment obtained with that achieved by manual optimisation.
The MPEG4 decoder is less affected by the optimisd-he speedup given by the tool was comparable and some-
tions applied to the IDCT algorithm than MPEG2. Thdimes even larger than that achieved by manual optimisa-
average execution time decrease after applying the optien, but the output video stream was damaged. It is likely
misations to the IDCT algorithm is 7.5% for MPEG2 andhat the problem appeared while transforming the GNU in-
3% for MPEG4 decoder. This affects the results of all thinhe assembly to macros. But since the MMX to TriMedia
applied optimisations: the MPEG2 decoder became on dol is in the development stage and has not been thor-
erage 41%, and MPEG4 — 30.3% faster. oughly tested, the problem can also be improper function-

_ _ ' _ ality of this tool. Discovering the reason(s) for the mal-
E. Automatic Transformation of MMX to TriMedia Code fynction would take too much time, so further work with

In order to make porting of MMX-optimised softwarethe MMX-to-TriMedia tool was cancelled.
to the TriMedia fast and easy, Philips is developing a tool The MMX-to-TriMedia tool introduces a certain over-
that automatically translates MMX macros to TriMediahead because there is no one-to-one match of MMX in-
compilable code. The MMX-to-TriMedia tool is a set of cstructions to those of the TriMedia. Some MMX instruc-
header files defining the MMX macros. A macro convertdons have to be expanded into non-optimal sequences of
one MMX instruction to one or more TriMedia instruc- IfiMedia instructions. In other words, in theory a manu-

tions and/or custom operation(s) trying to cause the leastyisys and MinGW [provide a Linux environment with GNU tool
possible overhead in the execution time. Since in softwasets allowing compilation of some Linux software on Windows.

ally optimised code must perform better than MMX cod¢ &

compiled with the tool. But in the case of libavcodec the e
IDCT algorithm implemented in C differs from that imple- /
mented using MMX. Hence, it is not correct to compar: *

the performance improvement achieved by the conversi /

Speedup

tool to that given by the manual optimisation. /
If the problem in the IDCT code can be fixed without 2 /

affecting the execution time, the MMX-to-TriMedia tool
provides a good opportunity to improve the execution tim
of applications that have already been optimised for MMX 0
Unfortunately, the process of transforming from GNLU
to Intel inline assembly took much more time and effort
than expected. It appeared to be very time-consuming and Fig. 3
error-prone and v_ve_qu_estlon if it is better than to apply SPEEDUP AS A FUNCTION OF THE NUMBER OICPUS.
some manual optimisations spending the same amount of
time.
In our opinion, the MMX-to-TriMedia tool is very use-
ful for quick optimisation for the TriMedia, if MMX- @achieved when the number of threads created by FFmpeg

optimised code in the form of macros or Intel inline asiS equal to the number of CPUs (TriMedias) in Wasabi.
sembly is available. If the conversion tool also supportgence below the number of CPUs determine the number

GNU inline assembly, it will solve the problem of GNU to©of threads.

Intel inline assembly conversion. Tablell shows the execution time for different numbers
of processors. Figurg depicts the speedup as a function

IV. PARALLELISATION OF LIBAVCODEC FORWASABI of the number of CPUs. It can be seen that the speedup is

The Wasabi chip contains several CPUs. Although trRlmost linear for up to 6 processors. After that it slightly
final design has not been decided, it is anticipated thigvels off. But the scalability is not very impressive: on 2
most processors will be TriMedias. To exploit the comEPUS the speedup is 1.8, on 4 CPUs it is 3.1, and finally
putational power of multiple TriMedias, libavcodec musPn 8 CPUs itis only 5.1.
be parallelised to distribute the workload among several S - —

Number of CPUs umber of cycles requency needed for

processors_ (millions) real-time processing
21626 4.3 GHz

0 1 2 3 4 5 B 7 8 9
Number of CPUs

In the original libavcodec the video encoding process is % 12,005 24 0Hz
parallelised using data parallelism. Each thread executes 6 4933 087 Mz
the same code but on a different piece of data (for exam-
ple, different areas of a video frame). It is implemented TABLE I
using the POSIX Pthread$][and Windows threads4] NUMBER OF CYCLES AND FREQUENCY REQUIRED TO
interfaces. However, Wasabi supports the TriMedia OpENCOPE VIDEO AND AUDIO FOR DIFFERENT NUMBERS OF
erating System Abstraction Layer (TM OSALT]) API. PROCESSORS

Therefore, a new interface for TM OSAL was created. The
Win32 threads interface was chosen as a base for it.
The creation of TM OSAL interface involved a change To explain this behaviour, Figuré depicts the thread
of library function calls in the Windows interface by equiv-activity during the encoding of one video frame. The
alent calls for TM OSAL and some more changes when apws represent the tasks (threads), the horizontal bars show
equivalent function could not be found. A new semaphonghen a processor was performing the task. A bar’s colour
was created to signalise that a task has finished its workindicates which CPU was executing the corresponding
Below the experimental results are presented. They caiask. The top row represents the main thr&gOT, the
sisted of encoding video and audio from raw format. Videaext seven rows named H3Ln (wheren is a number) are
is encoded in MPEG4 and audio — in MPEG Audio Layefidle” threads meaning that the processors were idle, and
2 format. The sample is 5 seconds long, the resolution fise following eight rows represent the tasks (threads) cre-
720 x 480, and the frame rate is 29.97 frames per secondted by libavcodec. The figure shows thread activity while
The bitrate is 2000 kbit/s. encoding a single video frame only, but the behaviour of
The experiments show that the highest speedup tise entire application is similar, except for the starting

| |
| - | | |
| Linux b eCos |
hoor Dl —— | o Lot |
oL — | Lo !
L2 [— m | GPP GPP | | TM ™ i
L3 I E— — : Application | |, | Application : : libavcodee | ,,, | libavcodec :
oLt E— | b |
DL | I e bbbt - e -
IDLE -] .
L7 | E—— |
re 0 | ! Shared memory
ask_o01e S
Task_omit I— |
Task__0020 [] |
Tesk_g0z1 — I | .
B — e | Fig. 5
Task_0023 | ‘ ! : MAPPING OF TASKS ON PROCESSORS IWASABI CHIP

Task_onze I \]

Fig. 4
THREAD ACTIVITY DURING THE ENCODING OF ONE viDEO ange of possibilities to speed up the system.
FRAME ON 8 PROCESSOR$THE IMAGE IS PROVIDED BY THE The idea of this part of the project is to develop a mech-
WASABI PERFORMANCE ANALYSIS TOOLTIMEDOCTOR). anism to communicate between applications running on

Linux (on GPPs) and libavcodec on TriMedia(s). It must
support multitasking, i.e., each GPP should be able to run
_ _ several applications using libavcodec simultaneously. The
point where the main thread performs some extra Wotlge applications utilising libavcodec should be kept un-
(regdlng the input file etc.). _ changed, it is certainly not desirable to require an appli-
Figure4 clearly shows that there are two steps in the eneation to deal with the interface. For an application, libav-

coding of a single frame that have been parallelised, i-@qdec is a dynamically loaded library, and it should remain
the encoding algorithm is divided into two computationhe same.

ally intensive parts that have been parallelised. The first

part is the motion estimation algorithm for the P- and BA, System Structure

frames and the algorithm determining the spatial complex- _.) _ o

ity for the frame rate control for I-frames. The second part >"Ce the interface provided to user applications should
performs the actual encoding. Between these two paHSt be chatr;ged, 2 "bhrarY chI?d Ilba:/codec on GPI.Dd.WIth
the application (the main thread) merges the contexts é‘f'—nu:f can be _madg thatis In fact a r\:vrapper providing
ter the first part and performs some other work, includinfjt€"face to TriMedia processors as shown in Figiire

preparing the MPEG4 picture header. This work is not par-

allelised and this is the reason why there is a gap betwe Linux on GPP eCos on TriMedia (TM)
the two parallelised parts. In this gap only the main three Teer _

is performing useful work on a single CPU. The other prc| | application |, | “Wrapper” “Wrapper” | | llbg;‘i’z‘?;
cessors are idle. This is also the main reason for the la lib:i‘;’flec GPP side TM side Tor TM
of scalability. In addition, the work is slightly unbalanced:

~
N

¥
some threads finish earlier than others. The second p
allelised part is performing quite well. Some CPUs finisl Shared memory
their work earlier than others and stay idle, but not for ver

lon —* Data communication
J . . ———* Control synchronization
Between the frames the main thread needs some time

(very little compared to that inside a frame) to process one

. . . Fig.
or more audio frames and switch to the next video frame. 9. 6

LIBRARIES - “WRAPPERS

V. LIBAVCODEC INTERFACE

The Wasabi chip will contain several TriMedias and one This “wrapper” library must provide a set of libavcodec
or more general purpose processors (GPPs). If the TriMapplication programming interface (API) functions. When
dias run libavcodec and the GPP(s) with Linux applicaa function is called by an application, the “wrapper” li-
tion(s) using it (as depicted in Figufsg, it gives a wide brary on the GPP side must pass the function name and its

parameters to the “wrapper” on the TriMedia side, whicbhe changed if it uses these function pointers).

calls that function in the real libavcodec library. The result A solution to these complications is that both the “wrap-

is passed by the “wrapper” on the TriMedia side to that oper” sides work in the same address space, and only point-

the GPP side, and the latter returns it to the application. ers are passed from GPP to TriMedia. This is possible only
The Wasabi chip will support interrupts. Remote procef both the GPP and TriMedia sides run Linux which works

dure calls can be implemented using them. The GPP-sidith the same (shared) page tables.

“wrapper” raises interrupt when a function call happens,

the TriMedia-side “wrapper” does it when a function reB.- Memory Allocation

turns. When an interrupt is sent, a special data structure injf the TriMedia side does not run Linux which is not
the shared memory is filled by the sender for the receivepyrrently the case, special care must be taken when trans-
The structure of the data passed from GPP-side “wraferring data from the GPP to TriMedia side. There is one
per” to that on the TriMedia side depends on several syfajor problem with memory allocation for data transfer:
tem properties. If the “wrappers” on both sides can addregs the GPP-side, the “wrapper” operates on a Linux sys-
memory in the same way (share the Linux page tablespm. Usually applications running on Linux do not have
than the communication data structure is very simple sin¢g bother with physical memory since Linux provides a
it does not have to transfer the data pointed by the fungophisticated memory management mechanism which al-
tions’ arguments. If the data must be transfered, than tigys any application to have its own large linear virtual
communication data structure depends on the communigaemory space. However, the “wrapper” on the GPP can-
tion buffer size. If there is a small communication buffehot pass a virtual address to the “wrapper” on the TriMe-
which cannot hold all the data pointed by the argumentgia, since it is meaningless for the latter: to translate a
all the data must be transfered through a FIFO. The conjirtual address to a physical one, it has to access the Linux
munication data structure should contain in any case th@ge tables. The “wrapper” on the GPP-side must provide
function name, arguments of the integral type, identifier gfhysical addresses, and if the buffer it allocates is larger
the calling process (if the system is multitasking), and sythan one page, it must occupy contiguous pages in physi-
chronisation fields. If the virtual address space is shareg)| memory, which is usually not the case when the space
between the GPP and TriMedia, the function arguments Rfallocated in Linux wittmallocsince the memory is frag-

the pointer type can be passed as they are. Otherwise thented. In addition, Linux should not swap the allocated

data must be transfered in one or more data buffers. Thage(s).

sender writes the data into the first, then into the second

buffer, etc. When all the buffers are filled in, the sendd8.1 “Wrapper” Structure on the GPP Side

rewr!tes the buffers in the same orQer, first c'he'cking if t_he The GPP-side “wrapper’ needs to work with kernel

recever has rfead the buffer it is gong to write into. SpIItfunctions that are available only for kernel modules. The

ting the data mtq several buﬁgrs is gsed to speed up tB?oposed structure is shown in Figute

data transfer: while the sender is writing the second buffer,

the receiver can read the first one etc. If there is only or Fro—— T

large buffer, the receiver has to wait while the sender write ffsfg splication |||+ %ﬁ;ﬁ;‘xﬁg?”- || Allecates & wrspper” data trasfs bt

it completely before reading it. Panctions. - get_buger(struct finction_call e)
In the case if all the data must be transferred from GPP

to the TriMedia, the “wrappers” are responsible for man- Fig. 7

aging all the pointers, which is a very Complicated task. It GPPSIDE “WRAPPER STRUCTURE

must convert the Linux virtual addresses into physical ad-

dresses understandable for the TriMedia side and convert

them back when receiving data from the TriMedia. These The Linux kernel module is loaded withsmodcom-

addresses can be not only the pointers among a functiomsnd (see 1I3] and [14]). It allocates the buffer of the

arguments, but also in the data structures pointed to byquired size wittkmalloc(can allocate up to 128 KByte)

them. Some structures contain function pointers that cam getfree pagegcan allocate maximum around 2 MB on

be invoked from libavcodec, and than the wrappers mustost systems with Linux 2.0 and later) function (s&g).

be able to organise it. Fortunately, all the function pointfhe GPP-side “wrapper” libavcodec library calls the inter-

ers needed seen so far have default implementations insfdee functiorget wrapper bufferaddr (it must be checked

libavcodec and thus this problem can be avoided by paghat the name does not contradict with other global Linux

ing NULL instead of them (but than the application muskernel symbols). The module returns the virtual address

of the buffer that can be used by the library to transfer theompiler will produce a more or less unreadable C code for
data. the TriMedia compiler. If Philips wants to incorporate the

As the system works, the memory becomes more afdiMedia extension into an open-source project, i.e. sub-
more fragmented; it is possible that there is no contigumit the TriMedia extension to the project maintainers and
ous space in memory of the size the module requests gombpose to include them in the project, an unreadable code
Linux cannot solve this problem by swapping/rearrangingan prevent the project maintainers from accepting it. This
the allocated pages. In this case the module will fail to atonclusion is based on the requirements for the code style
locate memory. To avoid this situation, the memory mughat are posed by the maintainers of libavcodec for those
be allocated as early as possible after the system boot. who want to submit some extensions.

If media processing with libavcodec is one of the major The manual optimisations applied demonstrate consid-
tasks of the system, the different technique for memory aérably good results. When the time constraints permit, it
location is advised. To get a large buffer of physically conis always advisable to apply manual optimisations to the
tiguous memory, we can allocate it by requesting memoryost time-consuming parts of applications.
at boot time. Allocation at boot time is the only way to Libavcodec supports many optimisations. As many
retrieve consecutive memory pages without the limits opther multimedia applications (for example the XviD
the size imposed bget free_pages both in terms of max- codec), libavcodec supports MMX optimisations. The au-
imum allowed size and limited choice of sizes. To use thi®matic MMX-to-TriMedia conversion tool described in
technique, the module must be linked directly in the kerngectionllI-E tries to exploit the existing MMX optimisa-
image; that is, the kernel must be rebuilt with it. With theions for a fast and easy optimisation for the TriMedia. The
kernel 2.3.23 and later, the functioalfoc_bootmempages results of this work show that this approach is not fast and
and others can be used. The way appropriate also for oldetsy with the current MMX-to-TriMedia tool in case the
kernels is reserving the top of RAM by passing them=MMX optimisations are in the form of GNU inline assem-
argument to the kernel at boot time, reserving a part ¢lly. The reason is that the MMX-to-TriMedia tool expects
memory from kernel's usage. The memory allocated ithe instructions in the form of macros which can be ob-
this way can never be freed until the system reboot (segined with another tool, but the latter accepts only the In-

[12], chapter 7 and 13 for detalils). tel inline assembly syntax. Manual code transformation
from GNU to Intel inline assembly syntax is very time-
V1. CONCLUSIONS consuming and error-prone. This problem can be solved

The process of porting libavcodec to the TriMedia tooly extending the inline assembly to macros conversion tool
(too) much time. Many other open-source applicationgyith GNU inline assembly support. Furthermore, these
which may also be ported to the TriMedia, are also writteipols can be incorporated into the TriMedia compiler to
for the latest GNU compiler and would have the same portrake the conversion process transparent to the user.
ing problems. These problems can be solved by extendingThe parallelisation process performed in this work
the GNU compiler with a back-end for the TriMedia. Thisproved that Wasabi is well prepared for a quick paralleli-
solution is better than extending the front-end of the Trisation of applications that already have been parallelised.
Media compiler to support the new features of the GNWVith the advantages of hyperthreaded processors and chip
compiler because it requires less effort. The back-end ofultiprocessors, it is expected that more and more open
the GNU compiler has to be extended only once. Aftegource applications such as libavcodec will support mul-
that, new extensions of the front-end of the GNU compildithreading. The only way to improve this feature of
will not require additional effort on the back-end for theWasabi even further is to extend its libraries with sup-
TriMedia. On the contrary, if the approach to extend thport for POSIX Pthreads, because parallelised open-source
front-end of the TriMedia compiler to support the syntax oéipplications for Linux will most probably utilise POSIX
the GNU compiler is taken, it should be updated every timethreads.
the GNU compiler’s front-end is enhanced with new fea- The interface suggested in this work is considerably
tures. This becomes more and more expensive intime. Acemplex. The primary reason of the complexity is that
other approach is to create a “C-to-C” compiler which wilthe application runs in the Linux domain and libavcodec
produce code supported by the TriMedia compiler fronworks in the TriMedia domain which uses another, less so-
the code for the GNU compiler. This solution has the sanhisticated operating system. Because the Memory Man-
drawback as extending the front-end of the TriMedia conagement Unit (MMU) creates the virtual memory address
piler: the “C-to-C” compiler must be updated every timespace and the memory segmentation on Linux, the inter-
the GNU compiler is extended. Besides that, a “C-to-Cface must copy all data from the Linux virtual address

space to contiguous buffers in the physical memory. Thijs1] , TriMedia Compilation System 4.5 - User Manualsl.
copying has a large negative effect on the performance. 3 - Compilation Tools, Sept 2004. _ _ _
Furthermore, it complicates the interface significantly bé2! Aléssandro Rubini and Jonathan Cortiaiux Device Drivers

. . second ed., June 2001, Availabletditp://www.xml.com/
cause of nested pointers in the data structures that should |yy/chapter/book/

be copied. The only solution to these problems is to run3] Peter Jay Salzman, Michael Burian, and Ori Pomerafite
Linux on the TriMedias. Linux Kernel Module Programming Guide2.6.1 ed., Sept
2005, Available athttp://tldp.org/LDP/Ikmpg/2.6/

VIl. FUTURE WORK html/

[14] , The Linux Kernel Module Programming Guid2.4.0
As future work on optimisation of libavcodec for ed., Sept 2005, Available ahttp:/tidp.org/LDP/

Wasabi, further TriMedia-style optimisations are highly _ kmpg/2.4/htmi/

. . 15] Paul Stravers and Jan Hoogerbruggfmmogeneous Multipro-
recommended. The optimisations targeted at the mcre&sé cessing and the Future of Silicon Design Paradigc. of In-

of the instruction level parallelism are expected t0 Sig- temational Symposium on VLSI Technology, Systems, and Ap-
nificantly improve the performance of the tasks running plications (VLSI-TSA), Apr 2001.
on the TriMedia processors, because currently most paft§l Jos van Eindhoven, Jan Hoogerbrugge, M.N. Jayram, Paul
of libavcodec do not employ the features offered by the ~Siravers: and Andrei Terechk@ache-coherent heterogeneous
. multiprocessing as basis for streaming application®l. 3,
VLIW architecture and a large amount of a useless code , 51_g0, 2005.
(NOPs) is executed. [17] Arjan van LankveldUser Documentation — OSAPhilips Semi-
The scalability of libavcodec’s video encoder execution conductors RTG/PID/2003/0086 (2003).
time when the number of CPUs is increased can be i) &Oﬁgeﬁalﬁﬁiﬁﬂ’lze mzi(goﬁandboc’k' MPEG-1, MPEG-2,
proved by parallelising the work that is performed by the N '
main thread while the other tasks are idle. Another ap-
proach is to improve this work using the TriMedia-style
optimisations so that its effect is less important. Further-
more, the video and audio decoders and audio encoder can
be parallelised. The potential of this parallelisation should
first be investigated, if it makes sense in terms of the in-
troduced synchronisation and communication overhead in
the system.
Finally, the interface between the general-purpose pro-
cessor and the TriMedia can be designed in a greater detail
and implemented.

REFERENCES

[1] MinGW - Homehttp://www.mingw.org/

[2] MPEG Pointers and Resourcegtp://mpeg.org

[3] The FFmpeg project http://ffmpeg.sourceforge.
net/ .

[4] Windows threads http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/
dllproc/base/multiple_threads.asp .

[5] Inc. Advanced Micro Devices3DNow! Technology Manual
(2000), Available at http://www.amd.com/us-en/
assets/content_type/white_papers_and_tech_
docs/21928.pdf

[6] Bill Homer, Restricted Pointerg1995), WG14/N448, X3J11/95-
049. Available atftp:/ftp.dmk.com/DMK/sc22wg14/
c9x/aliasing/

[7] Ze-Nian Li and Mark S. DrewFundamentals of Multimedj@ct
2003.

[8] Andrae Muys,POSIX Pthreads Tutorialhttp://www.cs.
nmsu.edu/“jcook/Tools/pthreads/pthreads.
html .

[9] Alex Peleg, Sam Wilkie, and Uri Weisdntel MMX for Multime-
dia PCs Communications of the ACMO (1997), no. 1, 24-38.

[10] Philips,TM1100 Preliminary Data Bogkvlarch 1999.

http://www.mingw.org/
http://mpeg.org
http://ffmpeg.sourceforge.net/
http://ffmpeg.sourceforge.net/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/multiple_threads.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/multiple_threads.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/multiple_threads.asp
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/21928.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/21928.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/21928.pdf
ftp://ftp.dmk.com/DMK/sc22wg14/c9x/aliasing/
ftp://ftp.dmk.com/DMK/sc22wg14/c9x/aliasing/
http://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthreads.html
http://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthreads.html
http://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthreads.html
http://www.xml.com/ldd/chapter/book/
http://www.xml.com/ldd/chapter/book/
http://tldp.org/LDP/lkmpg/2.6/html/
http://tldp.org/LDP/lkmpg/2.6/html/
http://tldp.org/LDP/lkmpg/2.4/html/
http://tldp.org/LDP/lkmpg/2.4/html/

	Introduction
	Porting FFmpeg to the TriMedia
	The C Language Changes Applied to FFmpeg
	Unsupported Library Functions and Type Declarations
	Operating System Specific Features
	Other Porting Issues

	Optimisation of Libavcodec for the TriMedia
	Introduction
	Which Parts to Optimise?
	Optimisation Methods
	Experimental Results
	Automatic Transformation of MMX to TriMedia Code

	Parallelisation of Libavcodec for Wasabi
	Libavcodec Interface
	System Structure
	Memory Allocation
	``Wrapper'' Structure on the GPP Side

	Conclusions
	Future Work

