
Architectural Support for 3D Graphics in the Complex Streamed
Instruction Set

Dmitry Cheresiz1 Ben Juurlink2 Stamatis Vassiliadis2 Harry A.G. Wijshoff11Leiden Institute of Advanced Computer Science
Leiden University

Leiden, The Netherlands

2Computer Engineering Laboratory
Delft University of Technology

Delft, The Netherlands

ABSTRACT
In this paper we extend the previously proposedComplex
Streamed Instruction Set (CSI) architecture to provide for
floating-point computations and conditional execution in or-
der to efficiently support 3D graphics applications. The CSI
extension is evaluated using an industry standard 3D bench-
mark, and compared to the Intel’s Streaming SIMD Extension
(SSE). Compared to a 4-way issue superscalar processor ex-
tended with SSE and capable of processing 8 single-precision
floating-point operations in parallel, the same processor ex-
tended with CSI attains the speedups of 2.8 and 2.13 on the
transform and lighting kernels and the speedup of 1.61 on the
geometry computations in whole. We also study how perfor-
mance scales with the number of floating-point units and ob-
serve that CSI extension allows to utilize them more efficiently
then SSE. Finally, the performance bottlenecks of the SSE-
enhanced superscalar CPUs on the 3D graphics workload are
identified. Results show that performance of the 4-way issue
machines is limited by the issue width and that of the 8-way
machines is limited by the number of the cache ports.

KEY WORDS
Multimedia, 3D graphics, processor architecture

1 Introduction
To provide an efficient way of exploiting data-level parallelism
present in multimedia applications, many CPU vendors ex-
tended their instruction set architectures (ISA) with Single In-
struction Multiple Data (SIMD) type of instructions. At first,
integer SIMD instructions, such as Intel’sMMX [13], were
provided in order to accelerate audio, video and 2D image
processing applications. Later, floating-point (FP) SIMD in-
structions were provided, aimed primarily at accelerating 3D
graphics processing. For example, Intel’sStreaming SIMD
Extension (SSE) [15] provides instructions which operate on
four 32-bit FP values packed into a 128-bit register in paral-
lel. While several papers have demonstrated that integer SIMD
ISA extensions can improve the performance of many mul-
timedia applications (see, e.g., [1, 14]), these instruction set
enhancements have several limitations. These extensions are
not able to fully exploit the parallelism present in multime-
dia applications. Specifically, since SIMD instructions operate
on fixed-sized registers, the processor needs to issue more in-
structions per cycle in order to process more elements in paral-
lel. However, it is generally accepted that increasing the issue
width requires a substantial amount of hardware [5] and nega-
tively affects the cycle time [12]. Another way to increase par-
allelism is to increase the size of the SIMD registers, but this

approach implies that existing codes have to be recompiled
or rewritten. These limitations were identified, for example,
in [9] and a solution, called the Complex Streamed Instruction
(CSI) set, was proposed. CSI instructions operate on arbitrary
long two-dimensional data streams stored in memory. It has
been shown that CSI can exploit more parallelism and attain
higher speedups than existing integer SIMD extensions can.

Floating-point SIMD instructions have been quantita-
tively evaluated by Yang et al. [16] and positive results have
been presented. However, the limitations of integer SIMD ex-
tensions described above apply to these extensions as well.
This largely motivates the work presented here. In this paper
we extend CSI with floating-point and conditional instructions
in order to efficiently support 3D graphics applications with
data-dependent control. The performance of the proposed ISA
extension is evaluated using an industry-standard 3D graphics
benchmark (SPEC’sViewperf). The main contributions of this
paper can be summarized as follows:� Compared to a 4-way issue superscalar processor ex-

tended with SSE and capable of performing 8 single-
precision FP operations in parallel, the same processor
extended with CSI attains a speedup of 1.61 on the ge-
ometry computations.� It is shown that the performance of the CSI-enhanced
processor scales better with the number of FP units than
the performance of the processor extended with SSE. For
example, when the number of FP operations which both
processors are capable to perform in parallel is increased
from 4 to 8 and to 16, the speedup of CSI over SSE in-
creases from 1.41 to 1.61 and to 1.72.� The bottlenecks of the SSE-enhanced superscalar proces-
sors are identified. Results show that the 4-way SSE-
enhanced CPU can not utilize more than a single SSE
unit and CPU’s issue width constitutes the bottleneck.
The 8-way SSE-extended CPU is unable to utilize more
than two SSE units and its performance is limited by the
number of cache ports.

This paper is structured as follows. In Section 2 we
provide background information about 3D image processing.
Section 3 describes the floating-point CSI instructions and
the conditional operations added to support loops containing
if-statements. In Section 4 the simulation methodology and
the experimental results are presented and discussed. In this
section we also show how the most important kernels of the
geometry pipeline were implemented using CSI instructions.
Section 5 briefly describes related work and contains our con-
clusions.

1

Modeling
transform

Lighting Projection Clipping
Screen

transform

Figure 1. 3D geometry pipeline.

2 Geometry Processing

A 3D application, such as CAD tool, 3D game, or virtual real-
ity application, creates the description of a 3D scene and stores
it in a database. This information is then passed to the graph-
ics processing system. In general, 3D graphics processing is
a 3-stage pipeline consisting of the following steps [8]: (1)
database traversal, (2) geometry calculation, and (3) rasteriza-
tion. The first stage is responsible for extracting the informa-
tion necessary for displaying a 3D scene created by an appli-
cation. 3D objects are usually described by a set of polygons
which model the object’s surface. The information needed
for display includes the coordinates of the polygon vertices,
the type of primitive which has to be constructed from these
vertices (e.g., line, polygon, triangle), material of the object,
lighting model, camera position, and many others. This infor-
mation is passed to the second stage, geometry computation,
which calculates the color and coordinates of each vertex in
the screen coordinate system. The final stage, rasterization,
takes the color and screen coordinates of each vertex as input,
calculates the pixel values for each point on the display, and
stores them in the frame buffer from where they are taken and
displayed on the monitor screen. In contemporary desktop
systems, CPU performs the database traversal and the geome-
try processing stages, and special-purpose hardware (so-called
graphics card) is employed for rasterization. The performance
of graphics cards increased significantly in the last few years
and according to some reports [11], the CPU has become the
bottleneck for 3D graphics, because CPUs “only” double in
speed every 18 months, while the performance of graphics
processors increases by a factor of eight in the same period
of time. Thererefore, a significant performance improvement
in the geometry processing task performed by the CPU is re-
quired. To understand the ways this problem can be attacked,
the geometry stage is described in more detail.

The computations carried out in the geometry stage are
organized in a pipeline. The data representing a 3D scene
flows through a number of kernels, as depicted in Figure 1.
The 3D geometry pipeline uses several coordinate systems to
describe the objects, namelymodeling coordinates, world co-
ordinates, view coordinates andscreen coordinates. The mod-
eling transform stage employs 3- and 4-dimensional matrix-
vector multiplication to transform the modeling coordinates to
world coordinates. The lighting stage computes the color of
each vertex. The projection stage transforms vertex coordi-
nates from the world to the view coordinate systems using 4D
matrix-vector multiplication. During the clipping stage the ob-
jects are clipped to the viewable domain to avoid unnecessary
rendering of the polygons positioned outside the area. The
screen transformation stage converts the 4D view coordinates(x; y; z; w) to the 3D screen coordinates. It consists of two
consecutive transformations. The first one divides thex, y,
andz component by thew component. The second one mul-
tiplies the obtained vector with a3� 3 matrix and adds a dis-
placement vector.

3 Floating-Point and Conditional Opera-
tions in CSI

In this section we briefly review the CSI architecture and then
extend it to provide for the floating-point operations and con-
ditional execution, which are essential for the 3D graphics.

CSI Overview. CSI is a memory-to-memory vector-like ar-
chitecture. CSI instructions process arbitrary-length streams
of data located in memory, performing arithmetic of logi-
cal operations. For example, thecsi_add instruction loads
two input streams from memory, adds their corresponding
elements, and writes the resulting stream back to memory.
Streams are two-dimensional. Each stream consists of an ar-
bitrary number of rows, and the row elements are stored at
a fixed stride which will be referred to ashorizontal stride.
There is also a fixed stride between consecutive rows, which
will be referred to asvertical stride. Each stream is specified
by a set of stream control registers (SCR-set). For a detailed
description of the CSI architecture, the reader is referred to [9].

Floating-point operations in CSI. The CSI data streams,
according to their definition in [9], consist of the elements that
belong to one of the following six arithmetic data types: 8-,
16-, or 32-bit binary integers, signed or unsigned. The data
type of the elements of a CSI stream is determined by theSize
andSign fields of theS4 control register from the SCR-set that
contains the stream parameters. We extend the notion of the
CSI data streams and allow an extra data type for the stream el-
ements: the 32-bit single precision floating point number for-
mat (IEEE 754 format). We also introduce a new 1-bit fieldFP
into theS4 register format, so that streams of the floating-point
numbers can be specified. An SCR-set specifies such a stream
if the fields of itsS4 register are set as follows:S4.Size = 4
(bytes),S4.FP = 1. The described extension allows the arith-
metic CSI instructions, such ascsi_add, to process streams
of FP numbers.

Conditional Execution Support in CSI. Data-parallel
applications operate on long streams of data and usually per-
form the same operation on each stream element. There are
situations, however, in which the operation to be performed
on each element is dependent on the element itself, as the fol-
lowing example shows:

for(i=0; i<N; i++){
if(A[i] > 0.0)

A[i] = A[i]+B[i];
}

The necessity to be able to handle such cases was recognized
in the vector processing domain. A solution used there is
masking. First, amask vector is produced, whosei-th element
is 1 if the corresponding condition is true and 0 otherwise.
Thereafter, amasked arithmetic instruction is executed which
operates as follows. If thei-th element of the mask vector is 1,
then the operation is actually performed. Otherwise, ano-op
is executed.

In CSI, we provide support for the masked execution in
the following way. First, we extend CSI with a new type of
data streams, theCSI bit streams, which will also be referred
to as theCSI mask streams. A CSI bit stream is a continu-
ous stream of bits in storage. It is completely specified by two

parameters:Base, which is the address of the byte contain-
ing the first stream element, andLength, which is the number
of bits (elements) in the stream. We extend the programmer-
visible state of CSI with 16MSCR-sets, or sets ofmask stream
control registers. Each of these sets consists of 2 32-bit regis-
ters,Base andLength, and can completely specify a CSI bit
stream. Second, we change the instruction formats, adding
an extra operand, which is called themask operand and is
required to be a CSI bit stream (specified via a MSCR-set).
We introduce two modes of operation in CSI:masked and
unmasked. The programmer-visible state of CSI is extended
with the stream status register (SSR), which contains the in-
formation about the current mode. If a CSI instruction is ex-
ecuted under the masked mode, the instruction processes the
data streams under the control of its mask stream operand. If
the current mode isunmasked, the instruction ignores the mask
operand and is executed as usual.

Masked operations have one major disadvantage, how-
ever. If many elements of the mask vector are 0, the no-ops
occupy resources while producing no useful results. The ne-
cessity to handle such situations efficiently was recognized,
for example, in [10]. One of the techniques proposed there
is the following: when a loop similar to the one presented
earlier in this section has to be processed, the elements, for
which theif-condition is true, should be extracted into a
shorter stream. This stream can then be processed without no-
ops, and the results can be inserted back into the destination
stream. We adopt this idea and introduce the CSI instructions
csi_extract andcsi_insert.� The csi_extract SCRSk, SCRSi, MSCRSj in-

struction performs the following operation. Each el-
ement of the mask stream described by MSCR-set
MSCRSj is checked. If the element is zero, the corre-
sponding element of the arithmetic streamSCRi is ig-
nored, otherwise it isextracted, i.e., stored, in the output
arithmetic streamSCRSk.� The csi_insert SCRSk,SCRSi,MSCRSj
instruction performs the reverse operation to
csi_extract. It inserts the elements of the in-
put streamSCRSi into that positions of the stream
SCRSk, for which the corresponding elements of the
mask streamMSCRSj are 1.

These instructions are intended to be used for loops that con-
tainif-then conditionals. Similarly, for efficient processing
of the loops which containif-then-else conditionals, we
extend CSI with two following instructions:csi_split and
csi_merge. The first instruction splits the input data stream,
under the control of the mask stream, into two shorter streams:
one contains the elements for which theif condition is true,
and another contains the elements for which it is false. The
second instruction,csi_merge, performs the reverse opera-
tion, conditionally merging two streams into one.

4 Evaluation
In order to evaluate the performance of the proposed ISA ex-
tension, we simulated a superscalar processor without a multi-
media ISA extension, a processor extended with SSE instruc-
tions and a processor extended with CSI instructions. We stud-
ied the SPECViewperf benchmark using theDX-06 dataset.

Viewperf is distributed with five datasets with widely vary-
ing characteristics, most important of which is the number of
vertices per primitive, because it determines the length of the
streams. It varies from 3.4 inAwadvs to around 400 inCDRS.
The DX-06 dataset lies between these extreme cases and has
an average of 95 vertices per primitive, as well as acceptable
simulation times.

4.1 Simulation Methodology and Tools
The simulator we used is thesim-outorder simulator of
the SimpleScalar toolset (release 3.0) [2]. This cycle-accurate
simulator simulates an out-of-order multiple-issue processor.
A corrected version of the SimpleScalar memory model based
on SDRAM specifications given in [4] was used.

The geometry computations inViewperf are performed
via API calls to theMESA library, which is the public-domain
implementation of theOpenGL graphics library. To simu-
late the benchmarks on a standard superscalar processor and
on superscalar processors with SSE and CSI extensions, we
created three different versions ofMesa, libMesaGL scalar.a,
libMesaGL SSE.a and libMesaGL CSI.a, and obtained three
versions of theViewperf executable by linking it with these
libraries. The scalar library was obtained by compiling the
Mesa sources usinggcc with the -02 -funroll-loops
optimization flags. SSE and CSI versions of the library were
created as follows. First, the source files containing the ker-
nelsxform points 4fv andgl color shade vertices fast were
compiled to assembly using the-O2 optimization flag. After
that, these kernels were manually rewritten using SSE or CSI
instructions and the object files were created. Finally, the rest
of the Mesa source files were compiled to objects and the re-
quired libraries were created.

We decided to modify the mentioned kernels because,
according to our experiments, on a 4-way superscalar machine
they account for 42% and 16% of the total geometry execution
time, respectively . In all libraries the call to therender vb
function was removed because it implements the rasterization
stage of thegraphics pipeline and this task is usually handled
by the graphics card, not by the CPU.

4.2 Coding the Kernels Using SSE and CSI
Thexform points 4fv function implements 4x4 floating-point
matrix-vector multiplication of a sequence of 4D vectors with
a fixed 4x4 matrix. This kernel is a part of themodeling
andprojection stages of the pipeline. The kernel can be fully
streamed and requires 8 CSI instructions, namely, 4csi_mul
and 4csi_acc_section instructions. For the SSE im-
plementation, the vendor code provided in [7] was used.

The gl color shade vertices fast kernel carries out the
lighting stage of the pipeline. For brevity, this kernel will be
referred to as thelight kernel. It is a complex kernel consisting
of about 80 lines of C code. A simplified pseudo code descrip-
tion is given in Figure 2(a). Before implementing this kernel
with CSI instructions, some transformations were performed
on the source code level, as depicted in Figure 2(b). The out-
ermost loop was split into three loops. The first loop initializes
the R,G,B color components of each vertex to the ambient light
constants. The second loop calculates the contributions of the
light sources to the vertex colors. Loop interchange was per-
formed on this loop, because the number of lights is likely to be

GLfloat R,G,B,A;
/* Alpha is constant for all vertices */
A= ..;
for (j=0; j<n; j++){ /* each vertex*/

/*set color to ambient light */
R = ctx->Light.BaseColor[0];
G= ..; B=..;
for (each light source){

calculate light’s R,G,B contribution;
R+=contribution_of_this_light_R;
G+=..;B+=..;

}
/*convert FP to integer for R,G,B,A*/
frontcolor[0][j]=(GLfixed)(R);
frontcolor[1][j]=(GLfixed)(G);
frontcolor[2][j]=(GLfixed)(B);
frontcolor[3][j]=(GLfixed)(A);

}

(a) Original code.

GLfloat tmp_R[],tmp_G[],tmp_B[],A;
A= ..;
for(j=0; j<n; j++){ /* each vertex*/

/*set to ambient light constants*/
tmp_R[j] = ctx->Light.BaseColor[0];
tmp_G[j]= ..; tmp_B[j]=..;

}
for(each light source){

for(j=0; j<n; j++){ /* each vertex*/
calculate R,G,B contribution of light;
tmp_R[j]+=contribution_of_this_light_R;
tmp_G[j]+=..;tmp_B[j}+=..;

}
}
/* convert FP to integer for R,G,B,A */
for(j=0; j<n; j++){ /* each vertex*/

frontcolor[0][j]=(GLfixed)(tmp_R[j]);
frontcolor[1][j]=(GLfixed)(tmp_G[j]);
frontcolor[2][j]=(GLfixed)(tmp_B[j]);
frontcolor[3][j]=(GLfixed)(A);

}

(b) Restructured code.

Figure 2. Original and restructured code of the lighting kernel

small (typically 1 or 2) which results in short streams and poor
CSI performance. The calculations of the light source con-
tribution contain severalif-then-else statements and were im-
plemented using conditional CSI instructions. The third loop
converts the R,G,B,A color components of each vertex from
floating-point to integer format. It was implemented using the
csi_fp_cvt.w instruction.

For SSE, we did not perform the similar source code re-
structuring because such transformation would imply storing
the intermediate results from SSE registers and then reloading
them and, therefore, is likely to decrease the performance. In-
stead, as a base for the SSE implementation of this kernel, we
used the code samples provided by Intel as well as [6].

4.3 Modeled Architecture

The base system is a 666 MHz 4-way superscalar processor
with out-of-order issue and execution based on the Register
Update Unit (RUU). The processor parameters are listed in Ta-
ble 1. TheViewperf benchmark exhibits a very high instruction
cache hit rates. Therefore, and in order to reduce simulation
time, a perfect instruction cache is assumed. The processor is
configured with the 32 KB 4-way associative L1 data cache
which has the cache line size of 64 bytes and with the 1 MB
2-way associative L2 data cache having 128 byte lines. The
access times for the caches are 1 and 6 cycles, respectively.
The main memory is the standard 166 MHz SDRAM memory
which has the row access, the row activate and the precharge
times of 2 (memory) cycles. The memory bus is 64 bytes wide
and is clocked at 166 MHz as well. The 4-way standard su-
perscalar machine was configured with 4 single-precision FP
adders and 4 single-precision FP multipliers. Both the SSE-
enhanced and CSI-enhanced processors have one SIMD FP
execution unit capable of performing 4 FP numbers in par-
allel. For SSE instructions, the latencies are the same as the
latencies of the corresponding scalar instructions. For the CSI

instructions, the latency of the main SIMD computation they
perform, such as add, multiply, etc., is taken the same as the
latency of the corresponding SSE/scalar instruction. The la-
tency of instruction itself is usually much longer, and is non-
deterministic, since the data streams it processes can be of
arbitrary length. In this paper we simulated a CSI execution
unit interfaced to the L1 data cache (a design of such a unit
is presented in [3]). This decision is motivated by the high
L1 hit rates exhibited byViewperf. Similar to the standard
superscalar and SSE-enhanced processors, the CSI-enhanced
processor uses two cache ports which are time-multiplexed be-
tween load and store accesses for source, mask and destination
streams.

We remark here that CSI instructions are executed in-
order. This is necessary to ensure semantic correctness of the
executed program. The CSI datapath performs parallel oper-
ations on several floating-point numbers, it does not execute
several CSI instructions in parallel.

4.4 Experimental Results
In this section we present the speedups attained by the SSE and
CSI multimedia ISA extensions and identify the bottlenecks of
SSE performance.

Relative performance of the standard, SSE and CSI
processors. First, we study the relative performance of all
three processor designs and investigate the influence of the in-
struction window size on their performance by varying the size
of the RUU and the LSQ (load-store queue). Recall that all ma-
chines considered are able to execute 4 FP operations in par-
allel. Figure 3 plots the speedups of the 4-way standard (re-
ferred as STD in the picture), SSE- and CSI-enhanced proces-
sors for varying RUU sizes with respect to the baseline sys-
tem: the 4-way superscalar processor with an RUU with 32
entries. CSI clearly outperforms SSE and standard processor,
especially for smaller RUU sizes. The reason for this is the

Table 1. Processor configuration.

Clock rate 666MHz
Issue width 4
Register update unit size 32
Load-store queue size 16
Branch Prediction

Bimodal predictor size 2K
Branch target buffer size 2K
Return-address stack size 8

Functional unit types, number
and cycles (latency, recovery)

Integer ALU 4 (1/1)
Integer MULT 4
multiply (3/1)
divide (20/19)

Cache ports 2 (1/1)
Floating-point ALU 4 (2/1)
Floating-point MULT 4
FP multiply (4/1)
FP divide (12/12)
sqrt (24/24)

viewperf

0

0.5

1

1.5

2

std sse csi std sse csi std sse csi

sp
ee

du
p

xform
light
geom

32 64 128RUU
SIZE

Figure 3. Speedups w.r.t. the baseline processor for varying
RUU sizes.
following. Both the standard and the SSE architecture exploit
the parallelism present in the 3D geometry pipeline in the form
of the instruction-level parallelism (ILP). When the size of the
RUU decreases, the processor’s ability to utilize the ILP also
decreases and so does the performance. For the CSI architec-
ture, the parallelism present in computations is exploited in a
single instruction and, therefore, insensitive to the RUU size.
This feature of CSI also translates into dramatic reductions of
instruction traffic. Results show thatCSI reduces the dynamic
instruction count of thexform andlight kernels by the factors
of 30 and 5.1 and that of the whole geometry pipeline by the
factor of 2.71. SSE provides the reduction only by the factors
of 1.45, 1.13, and 1.15, respectively. The ability of CSI to pro-
vide high performance with the smaller instruction window is
rather beneficial, since this resource is expensive and its cost
grows quadratically with respect to its size.

Figure 3 also shows that performance of the SSE-
enhanced processor is close to that of the processor without any
media extension. However, the SSE implementation is likely to
achieve a higher clock rate, because it requires fewer register
file ports. Another important advantage of SSE is that it allows
scaling the number of FP execution units so that it can execute
up to 16 FP operations in parallel without increasing the issue
width. We, therefore, no longer include the results for the stan-

dard superscalar processor.

Performance scalability and bottlenecks. Next we study
the performance scalability of the SSE- and CSI-enhanced ma-
chines with respect to the number of floating-point computing
resources, the issue width and the number of cache ports in
order to identify the bottlenecks. The following machines are
considered. As the baseline 4-issue processor we take the 4-
issue CPU with 128-entry RUU and other parameters as in Ta-
ble 1. For the baseline 8-issue machine we double the RUU size
and the number of functional units. The processors are config-
ured with 1, 2, or 4 SSE execution units. The same processors
are enhanced with CSI execution unit having a 128-, 256-, or
512-bit wide datapath. So, these CPUs are also able to perform
4, 8, or 16 single-precision FP operations in parallel. Each of
the processors is then configured with 2 or 4 cache ports.

Figure 4 depicts the speedups of the SSE- and CSI-
enhanced processors comparing each to the 4-way SSE-
enhanced processor with two cache ports and capable of per-
forming 4FP operations is parallel. The results for CPUs with
two cache ports are denoted with ’mem2’, and those for CPUs
with four ports with ’mem4’. The bars denoted with ’4fp’,
’8fp’, and ’16fp’ show the speedups attained by the SSE- or
CSI-enhanced CPUs capable of performing 4, 8, and 16 FP op-
erations in parallel. The presented results lead to the following
observations. First, the 4-way SSE CPUs can not exploit more
than one SSE unit (4 parallel FP operations). Since increasing
the number of cache ports does not significantly improve the
performance, we conclude that the issue width of such CPU
constitutes the bottleneck. This conclusion is supported by the
observation that increasing the issue width of an SSE-enhanced
CPU from 4 to 8 speeds up the geometry pipeline approxi-
mately by the factor of 1.8, if sufficient number of cache ports
is provided. The performance of the 8-way SSE CPU strongly
depends on the number of cache ports, leading to the conclu-
sion that the cache ports constitute the bottleneck for this ma-
chine. We also observe that even provided with 4 ports, 8-way
SSE CPU can not utilize more then 2 SSE units (8 parallel FP
operations).

The results show that, contrary to the SSE-enhanced pro-
cessors, the CSI-enhanced ones can exploit efficiently the hard-
ware that allows to perform up to 16 parallel FP operations
and can provide high performance without increasing the is-
sue width. This is rather natural, since the parallelism in CSI
is exploited in a single instruction and not in the form of ILP.
This is particularly evident for thexform kernel which is fully
streamed. Bigger issue width provides, however, the perfor-
mance improvements for the geometry pipeline in whole due to
the presence of the non-streamed code sections.

Furthermore, the performance of a CSI-enhanced CPU
is not sensitive to the number of cache ports. This is natural
as well, because the L1-interfaced implementation of CSI we
study delivers a whole cache line in a single access and, there-
fore, performs less accesses. The ability of CSI to exploit large
number of parallel FP processing hardware without increasing
the issue width or the number of cache ports is very impor-
tant for the processor design, because the increase of any of
these parameters bears huge hardware costs (we are not aware
of any existing CPU which has the issue-width of 8 or a 4-
ported cache) and can negatively affect the cycle time. On the
other hand, the increasing scale of integration and transistor

xform

0

0.5

1

1.5

2

2.5

3

3.5

mem2 mem4 mem2 mem4 mem2 mem4 mem2 mem4

speedup

4fp

8fp

16fp

4−way 8−way 4−way 8−way
SSE CSI

light

0

0.5

1

1.5

2

2.5

3

mem2 mem4 mem2 mem4 mem2 mem4 mem2 mem4

speedup

4fp

8fp

16fp

4−way 8−way 4−way 8−way

SSE CSI

geometry

0

0.5

1

1.5

2

2.5

mem2 mem4 mem2 mem4 mem2 mem4 mem2 mem4

speedup

4fp
8fp
16fp

4−way 8−way 4−way 8−way

 SSE CSI

Figure 4. Speedups of CSI and SSE CPUs over the baseline 4-way SSE CPU.

budgets allow a designer to put dozens of functional units of a
single chip and the main challenge is how to utilize them. CSI
provides the solution, scaling very well when the number of
the parallel execution hardware is increased. We observe that
a 4-way CSI-enhanced CPU with 2 cache ports and capable
of performing 16 parallel FP operations on thexform andlight
kernels outperforms very aggressive 8-way SSE-enhanced CPU
which has 4 cache ports and performs just 10% slower on the
geometry pipeline in whole.

5 Related Work and Conclusions
The CSI architectural paradigm was presented and evaluated
in [9]. Another proposal aimed at exploiting higher degrees
of data-level parallelism in multimedia applications is the Ma-
trix Oriented Multimedia (MOM) ISA extension. MOM is a
register-to-register vector-like architecture and its instructions
can be viewed as vector versions of integer SIMD instructions.
MOM does not provide floating-point nor conditional instruc-
tions. Another related proposal is the Imagine processor [10],
which has a load/store architecture for one-dimensional streams
of data records. This architecture belongs to a different cate-
gory than CSI, since it is a stand-alone media processor and not
an ISA extension implemented in a CPU.

In this paper we extended the CSI architecture with floating-
point instructions and added architectural support for imple-
menting loops with data-dependent control flow. It was shown
that the most important parts of the 3D geometry pipeline can
be implemented using the proposed extensions. The perfor-
mance benefits provided by CSI were compared with those
achieved by Intel’sSSE extension. They were evaluated by im-
plementing several routines of theMesa 3D library using CSI
and SSE instructions and by evaluating the library performance
using the industry-standard 3D performance evaluation bench-
markViewperf.

For the 4-way issue machine with an RUU of 32 entries
and floating-point resources capable of performing 4 single-
precision floating-point operations is parallel, the speedups of
CSI over SSE on the kernelsxform and light were 1.70 and
1.84, respectively. These speedups translated to an applica-
tion speedup of 1.40. The performance scalability of SSE and
CSI with respect to the number of floating-point computing re-
sources was also studied, showing that CSI can exploit more
parallelism. For the processors capable of executing 8 single-
precision FP operations in parallel and having an 128-entry in-
struction window, the speedups of CSI over SSE were equal to
2.46, 1.92, and 1.62 for thexform and light kernels, and the

geometry computation, respectively.

References

[1] R. Bhargava, L. John, B. Evans, and R. Radhakrishnan.
Evaluating MMX Technology Using DSP and Multimedia
Applications. InMICRO 31, pages 37–46, 1998.

[2] D. Burger and T. Austin. The SimpleScalar Tool Set,
Version 2.0. Technical Report 1342, Univ. of Wisconsin-
Madison, Comp. Sci. Dept., 1997.

[3] D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. Wijshoff.
Implementation of a Streaming Execution Unit. InEU-
ROMICRO 28, 2002.

[4] M. Gries. The Impact of Recent DRAM Architectures
on Embedded Systems Performance. InEUROMICRO 26,
2000.

[5] J. Hennessy and D. Patterson.Computer Architecture - A
Quantitative Approach. Morgan Kaufmann, 2nd edition,
1996.

[6] Diffuse-Directional Lighting, Application Note AP-596, In-
tel Corp., 1999.

[7] Streaming SIMD Extensions - Matrix Multiplication, AP-
930, Intel Corp.

[8] J.Foley, A. van Dam, S.Feiner, and J.Hughes.Computer
Graphics - Principles and Practice. Addison-Wesley, 1996.

[9] B. Juurlink, D. Tcheressiz, S. Vassiliadis, and H. Wijshoff.
Implementation and Evaluation of the Complex Streamed
Instruction Set. InInt. Conf. on Parallel Architectures and
Compilation Techniques (PACT), 2001.

[10] B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong,
J. Owens, B. Towles, A. Chang, and S. Rixner. Imagine:
Media Processing With Streams.IEEE Micro, 21(2):35–47,
2001.

[11] Transform and Lighting, Techinical Brief,
Nvidia Corp. Document available via
http://www.nvidia.com/docs/IO/1345/ATT/ Transfor-
mAndLighting.pdf.

[12] S. Palacharla, N. Jouppi, and J. Smith. Complexity-
Effective Superscalar Processors. InISCA’97, 1997.

[13] A. Peleg and U. Weiser. MMX Technology Extension to the
Intel Architecture.IEEE Micro, 16(4):42–50, 1996.

[14] P. Ranganathan, S. Adve, and N. Jouppi. Performance of
Image and Video Processing with General-Purpose Proces-
sors and Media ISA Extensions. InISCA 26, pages 124–
135, 1999.

[15] S. Thakkar and T. Huff. The Internet Streaming SIMD Ex-
tensions.Intel Technology Journal, May 1999.

[16] C. Yang, B. Sano, and A. Lebeck. Exploiting Parallelism in
Geometry Processing with General Purpose Processors and
Floating-Point SIMD Instructions .IEEE Transactions on
Computers, 49(9):934–946, 2000.

